Loading…

Correlated Differential Privacy of Multiparty Data Release in Machine Learning

Differential privacy (DP) is widely employed for the private data release in the single-party scenario. Data utility could be degraded with noise generated by ubiquitous data correlation, and it is often addressed by sensitivity reduction with correlation analysis. However, increasing multiparty dat...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computer science and technology 2022-02, Vol.37 (1), p.231-251
Main Authors: Zhao, Jian-Zhe, Wang, Xing-Wei, Mao, Ke-Ming, Huang, Chen-Xi, Su, Yu-Kai, Li, Yu-Chen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-f2615f757aa1b5b261fa1cda33408023833d443d32a7090ccfc3b478e508b67e3
cites cdi_FETCH-LOGICAL-c392t-f2615f757aa1b5b261fa1cda33408023833d443d32a7090ccfc3b478e508b67e3
container_end_page 251
container_issue 1
container_start_page 231
container_title Journal of computer science and technology
container_volume 37
creator Zhao, Jian-Zhe
Wang, Xing-Wei
Mao, Ke-Ming
Huang, Chen-Xi
Su, Yu-Kai
Li, Yu-Chen
description Differential privacy (DP) is widely employed for the private data release in the single-party scenario. Data utility could be degraded with noise generated by ubiquitous data correlation, and it is often addressed by sensitivity reduction with correlation analysis. However, increasing multiparty data release applications present new challenges for existing methods. In this paper, we propose a novel correlated differential privacy of the multiparty data release (MP-CRDP). It effectively reduces the merged dataset’s dimensionality and correlated sensitivity in two steps to optimize the utility. We also propose a multiparty correlation analysis technique. Based on the prior knowledge of multiparty data, a more reasonable and rigorous standard is designed to measure the correlated degree, reducing correlated sensitivity, and thus improve the data utility. Moreover, by adding noise to the weights of machine learning algorithms and query noise to the release data, MP-CRDP provides the release technology for both low-noise private data and private machine learning algorithms. Comprehensive experiments demonstrate the effectiveness and practicability of the proposed method on the utilized Adult and Breast Cancer datasets.
doi_str_mv 10.1007/s11390-021-1754-5
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jsjkxjsxb_e202201012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A717672869</galeid><wanfj_id>jsjkxjsxb_e202201012</wanfj_id><sourcerecordid>jsjkxjsxb_e202201012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-f2615f757aa1b5b261fa1cda33408023833d443d32a7090ccfc3b478e508b67e3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhiMEEqXwA7hZ4kra8VecHKsttEhbQFU5WxNnvDikzmJnofvvcZVKPSFL_tLzeEZ-q-o9hzMOYM4z57KDGgSvudGq1i-qE942UCujupdlDwB1V6bX1ZucRwBpQKmT6utmTokmXGhgl8F7ShSXgBP7nsIfdEc2e3ZzmJawx7Qc2SUuyG5pIszEQmQ36H6GSGxLmGKIu7fVK49TpndP62n14_Onu811vf129WVzsa2d7MRSe9Fw7Y02iLzXfTl55G5AKRW0IGQr5aCUHKRAAx04553slWlJQ9s3huRp9XF99y9Gj3Fnx_mQYqloxzz-ehjzQ29JgBDAgYuCf1jxfZp_Hygvz7zoyjcp3eqmUGcrtcOJbIh-XhK6Mga6D26O5EO5vzDcNEa0TVcEvgouzTkn8nafwj2mo-VgH2Oxayy2xGIfY7G6OGJ1cmHjjtJzK_-X_gHhjo3y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918645856</pqid></control><display><type>article</type><title>Correlated Differential Privacy of Multiparty Data Release in Machine Learning</title><source>ABI/INFORM global</source><source>Springer Nature</source><creator>Zhao, Jian-Zhe ; Wang, Xing-Wei ; Mao, Ke-Ming ; Huang, Chen-Xi ; Su, Yu-Kai ; Li, Yu-Chen</creator><creatorcontrib>Zhao, Jian-Zhe ; Wang, Xing-Wei ; Mao, Ke-Ming ; Huang, Chen-Xi ; Su, Yu-Kai ; Li, Yu-Chen</creatorcontrib><description>Differential privacy (DP) is widely employed for the private data release in the single-party scenario. Data utility could be degraded with noise generated by ubiquitous data correlation, and it is often addressed by sensitivity reduction with correlation analysis. However, increasing multiparty data release applications present new challenges for existing methods. In this paper, we propose a novel correlated differential privacy of the multiparty data release (MP-CRDP). It effectively reduces the merged dataset’s dimensionality and correlated sensitivity in two steps to optimize the utility. We also propose a multiparty correlation analysis technique. Based on the prior knowledge of multiparty data, a more reasonable and rigorous standard is designed to measure the correlated degree, reducing correlated sensitivity, and thus improve the data utility. Moreover, by adding noise to the weights of machine learning algorithms and query noise to the release data, MP-CRDP provides the release technology for both low-noise private data and private machine learning algorithms. Comprehensive experiments demonstrate the effectiveness and practicability of the proposed method on the utilized Adult and Breast Cancer datasets.</description><identifier>ISSN: 1000-9000</identifier><identifier>EISSN: 1860-4749</identifier><identifier>DOI: 10.1007/s11390-021-1754-5</identifier><language>eng</language><publisher>Singapore: Springer Singapore</publisher><subject>Algorithms ; Artificial Intelligence ; Computer Science ; Correlation analysis ; Data correlation ; Data mining ; Data Structures and Information Theory ; Datasets ; Information Systems Applications (incl.Internet) ; Information technology ; Machine learning ; Medical databases ; Military pensions ; Political aspects ; Privacy ; Regular Paper ; Sensitivity analysis ; Software Engineering ; Theory of Computation</subject><ispartof>Journal of computer science and technology, 2022-02, Vol.37 (1), p.231-251</ispartof><rights>Institute of Computing Technology, Chinese Academy of Sciences 2022</rights><rights>COPYRIGHT 2022 Springer</rights><rights>Institute of Computing Technology, Chinese Academy of Sciences 2022.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-f2615f757aa1b5b261fa1cda33408023833d443d32a7090ccfc3b478e508b67e3</citedby><cites>FETCH-LOGICAL-c392t-f2615f757aa1b5b261fa1cda33408023833d443d32a7090ccfc3b478e508b67e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/jsjkxjsxb-e/jsjkxjsxb-e.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2918645856?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,44339</link.rule.ids></links><search><creatorcontrib>Zhao, Jian-Zhe</creatorcontrib><creatorcontrib>Wang, Xing-Wei</creatorcontrib><creatorcontrib>Mao, Ke-Ming</creatorcontrib><creatorcontrib>Huang, Chen-Xi</creatorcontrib><creatorcontrib>Su, Yu-Kai</creatorcontrib><creatorcontrib>Li, Yu-Chen</creatorcontrib><title>Correlated Differential Privacy of Multiparty Data Release in Machine Learning</title><title>Journal of computer science and technology</title><addtitle>J. Comput. Sci. Technol</addtitle><description>Differential privacy (DP) is widely employed for the private data release in the single-party scenario. Data utility could be degraded with noise generated by ubiquitous data correlation, and it is often addressed by sensitivity reduction with correlation analysis. However, increasing multiparty data release applications present new challenges for existing methods. In this paper, we propose a novel correlated differential privacy of the multiparty data release (MP-CRDP). It effectively reduces the merged dataset’s dimensionality and correlated sensitivity in two steps to optimize the utility. We also propose a multiparty correlation analysis technique. Based on the prior knowledge of multiparty data, a more reasonable and rigorous standard is designed to measure the correlated degree, reducing correlated sensitivity, and thus improve the data utility. Moreover, by adding noise to the weights of machine learning algorithms and query noise to the release data, MP-CRDP provides the release technology for both low-noise private data and private machine learning algorithms. Comprehensive experiments demonstrate the effectiveness and practicability of the proposed method on the utilized Adult and Breast Cancer datasets.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Correlation analysis</subject><subject>Data correlation</subject><subject>Data mining</subject><subject>Data Structures and Information Theory</subject><subject>Datasets</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Information technology</subject><subject>Machine learning</subject><subject>Medical databases</subject><subject>Military pensions</subject><subject>Political aspects</subject><subject>Privacy</subject><subject>Regular Paper</subject><subject>Sensitivity analysis</subject><subject>Software Engineering</subject><subject>Theory of Computation</subject><issn>1000-9000</issn><issn>1860-4749</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kU1v1DAQhiMEEqXwA7hZ4kra8VecHKsttEhbQFU5WxNnvDikzmJnofvvcZVKPSFL_tLzeEZ-q-o9hzMOYM4z57KDGgSvudGq1i-qE942UCujupdlDwB1V6bX1ZucRwBpQKmT6utmTokmXGhgl8F7ShSXgBP7nsIfdEc2e3ZzmJawx7Qc2SUuyG5pIszEQmQ36H6GSGxLmGKIu7fVK49TpndP62n14_Onu811vf129WVzsa2d7MRSe9Fw7Y02iLzXfTl55G5AKRW0IGQr5aCUHKRAAx04553slWlJQ9s3huRp9XF99y9Gj3Fnx_mQYqloxzz-ehjzQ29JgBDAgYuCf1jxfZp_Hygvz7zoyjcp3eqmUGcrtcOJbIh-XhK6Mga6D26O5EO5vzDcNEa0TVcEvgouzTkn8nafwj2mo-VgH2Oxayy2xGIfY7G6OGJ1cmHjjtJzK_-X_gHhjo3y</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Zhao, Jian-Zhe</creator><creator>Wang, Xing-Wei</creator><creator>Mao, Ke-Ming</creator><creator>Huang, Chen-Xi</creator><creator>Su, Yu-Kai</creator><creator>Li, Yu-Chen</creator><general>Springer Singapore</general><general>Springer</general><general>Springer Nature B.V</general><general>School of Computer Science and Engineering,Northeastern University,Shenyang 110819,China</general><general>Software College,Northeastern University,Shenyang 110169,China%State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20220201</creationdate><title>Correlated Differential Privacy of Multiparty Data Release in Machine Learning</title><author>Zhao, Jian-Zhe ; Wang, Xing-Wei ; Mao, Ke-Ming ; Huang, Chen-Xi ; Su, Yu-Kai ; Li, Yu-Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-f2615f757aa1b5b261fa1cda33408023833d443d32a7090ccfc3b478e508b67e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Correlation analysis</topic><topic>Data correlation</topic><topic>Data mining</topic><topic>Data Structures and Information Theory</topic><topic>Datasets</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Information technology</topic><topic>Machine learning</topic><topic>Medical databases</topic><topic>Military pensions</topic><topic>Political aspects</topic><topic>Privacy</topic><topic>Regular Paper</topic><topic>Sensitivity analysis</topic><topic>Software Engineering</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Jian-Zhe</creatorcontrib><creatorcontrib>Wang, Xing-Wei</creatorcontrib><creatorcontrib>Mao, Ke-Ming</creatorcontrib><creatorcontrib>Huang, Chen-Xi</creatorcontrib><creatorcontrib>Su, Yu-Kai</creatorcontrib><creatorcontrib>Li, Yu-Chen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI-INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of computer science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Jian-Zhe</au><au>Wang, Xing-Wei</au><au>Mao, Ke-Ming</au><au>Huang, Chen-Xi</au><au>Su, Yu-Kai</au><au>Li, Yu-Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Correlated Differential Privacy of Multiparty Data Release in Machine Learning</atitle><jtitle>Journal of computer science and technology</jtitle><stitle>J. Comput. Sci. Technol</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>37</volume><issue>1</issue><spage>231</spage><epage>251</epage><pages>231-251</pages><issn>1000-9000</issn><eissn>1860-4749</eissn><abstract>Differential privacy (DP) is widely employed for the private data release in the single-party scenario. Data utility could be degraded with noise generated by ubiquitous data correlation, and it is often addressed by sensitivity reduction with correlation analysis. However, increasing multiparty data release applications present new challenges for existing methods. In this paper, we propose a novel correlated differential privacy of the multiparty data release (MP-CRDP). It effectively reduces the merged dataset’s dimensionality and correlated sensitivity in two steps to optimize the utility. We also propose a multiparty correlation analysis technique. Based on the prior knowledge of multiparty data, a more reasonable and rigorous standard is designed to measure the correlated degree, reducing correlated sensitivity, and thus improve the data utility. Moreover, by adding noise to the weights of machine learning algorithms and query noise to the release data, MP-CRDP provides the release technology for both low-noise private data and private machine learning algorithms. Comprehensive experiments demonstrate the effectiveness and practicability of the proposed method on the utilized Adult and Breast Cancer datasets.</abstract><cop>Singapore</cop><pub>Springer Singapore</pub><doi>10.1007/s11390-021-1754-5</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1000-9000
ispartof Journal of computer science and technology, 2022-02, Vol.37 (1), p.231-251
issn 1000-9000
1860-4749
language eng
recordid cdi_wanfang_journals_jsjkxjsxb_e202201012
source ABI/INFORM global; Springer Nature
subjects Algorithms
Artificial Intelligence
Computer Science
Correlation analysis
Data correlation
Data mining
Data Structures and Information Theory
Datasets
Information Systems Applications (incl.Internet)
Information technology
Machine learning
Medical databases
Military pensions
Political aspects
Privacy
Regular Paper
Sensitivity analysis
Software Engineering
Theory of Computation
title Correlated Differential Privacy of Multiparty Data Release in Machine Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A26%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Correlated%20Differential%20Privacy%20of%20Multiparty%20Data%20Release%20in%20Machine%20Learning&rft.jtitle=Journal%20of%20computer%20science%20and%20technology&rft.au=Zhao,%20Jian-Zhe&rft.date=2022-02-01&rft.volume=37&rft.issue=1&rft.spage=231&rft.epage=251&rft.pages=231-251&rft.issn=1000-9000&rft.eissn=1860-4749&rft_id=info:doi/10.1007/s11390-021-1754-5&rft_dat=%3Cwanfang_jour_proqu%3Ejsjkxjsxb_e202201012%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-f2615f757aa1b5b261fa1cda33408023833d443d32a7090ccfc3b478e508b67e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918645856&rft_id=info:pmid/&rft_galeid=A717672869&rft_wanfj_id=jsjkxjsxb_e202201012&rfr_iscdi=true