Loading…

Abnormality Degree Detection Method Using Negative Potential Field Group Detectors

Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of mechanical engineering 2015-09, Vol.28 (5), p.983-993
Main Authors: Zhang, Hongli, Liu, Shulin, Li, Dong, Shi, Kunju, Wang, Bo, Cui, Jiqiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433
container_end_page 993
container_issue 5
container_start_page 983
container_title Chinese journal of mechanical engineering
container_volume 28
creator Zhang, Hongli
Liu, Shulin
Li, Dong
Shi, Kunju
Wang, Bo
Cui, Jiqiang
description Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.
doi_str_mv 10.3901/CJME.2015.0604.077
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jxgcxb_e201505014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666060180</cqvip_id><wanfj_id>jxgcxb_e201505014</wanfj_id><sourcerecordid>jxgcxb_e201505014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433</originalsourceid><addsrcrecordid>eNp9kE9PAjEQxRujiYh-AU8bPXnYdbrdv0eCgBpQY-TctLvdZQm00BaFb283S-TmaTKT33tv8hC6xRCQHPDj8HU2CkLAcQAJRAGk6RnqhTgP_SyMs3PUwwDg5ySKL9GVMUu3JRhnPfQ54FLpNVs19uA9iVoL4YYVhW2U9GbCLlTpzU0ja-9N1Mw238L7UFZI27CVN27EqvQmWu02R5XS5hpdVGxlxM1x9tF8PPoaPvvT98nLcDD1C0Kw9UnKo4TzPI9LkkHM3d8pSyPMkygFlpCKVILn7gQ8y3DKIoyh4lVVch6KIiKkjx463x8mKyZrulQ7LV0iXe7rYs-paAuBGHDk2PuO3Wi13QljT3AYxjlJCY5bKuyoQitjtKjoRjdrpg8UA217pm3PtLWlbc_U9exEpBMZB8ta6JP1v6q7Y9RCyXrrhH9ZSZI4DGdAfgFxMYrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259373154</pqid></control><display><type>article</type><title>Abnormality Degree Detection Method Using Negative Potential Field Group Detectors</title><source>Publicly Available Content Database</source><creator>Zhang, Hongli ; Liu, Shulin ; Li, Dong ; Shi, Kunju ; Wang, Bo ; Cui, Jiqiang</creator><creatorcontrib>Zhang, Hongli ; Liu, Shulin ; Li, Dong ; Shi, Kunju ; Wang, Bo ; Cui, Jiqiang</creatorcontrib><description>Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.</description><edition>English ed.</edition><identifier>ISSN: 1000-9345</identifier><identifier>EISSN: 2192-8258</identifier><identifier>DOI: 10.3901/CJME.2015.0604.077</identifier><language>eng</language><publisher>Beijing: Chinese Mechanical Engineering Society</publisher><subject>Algorithms ; Computer simulation ; Datasets ; Detectors ; Electrical Machines and Networks ; Electronics and Microelectronics ; Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Instrumentation ; Machines ; Manufacturing ; Mechanical Engineering ; Methods ; Monitoring ; Potential fields ; Power Electronics ; Processes ; Sensors ; Theoretical and Applied Mechanics ; 位场 ; 在线监测方法 ; 异常状态 ; 探测器 ; 检测结果 ; 监测参数 ; 监测结果 ; 设备状态</subject><ispartof>Chinese journal of mechanical engineering, 2015-09, Vol.28 (5), p.983-993</ispartof><rights>Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Chinese Journal of Mechanical Engineering is a copyright of Springer, (2015). All Rights Reserved.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85891X/85891X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2259373154?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Hongli</creatorcontrib><creatorcontrib>Liu, Shulin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Shi, Kunju</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Cui, Jiqiang</creatorcontrib><title>Abnormality Degree Detection Method Using Negative Potential Field Group Detectors</title><title>Chinese journal of mechanical engineering</title><addtitle>Chin. J. Mech. Eng</addtitle><addtitle>Chinese Journal of Mechanical Engineering</addtitle><description>Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Electrical Machines and Networks</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Instrumentation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Potential fields</subject><subject>Power Electronics</subject><subject>Processes</subject><subject>Sensors</subject><subject>Theoretical and Applied Mechanics</subject><subject>位场</subject><subject>在线监测方法</subject><subject>异常状态</subject><subject>探测器</subject><subject>检测结果</subject><subject>监测参数</subject><subject>监测结果</subject><subject>设备状态</subject><issn>1000-9345</issn><issn>2192-8258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kE9PAjEQxRujiYh-AU8bPXnYdbrdv0eCgBpQY-TctLvdZQm00BaFb283S-TmaTKT33tv8hC6xRCQHPDj8HU2CkLAcQAJRAGk6RnqhTgP_SyMs3PUwwDg5ySKL9GVMUu3JRhnPfQ54FLpNVs19uA9iVoL4YYVhW2U9GbCLlTpzU0ja-9N1Mw238L7UFZI27CVN27EqvQmWu02R5XS5hpdVGxlxM1x9tF8PPoaPvvT98nLcDD1C0Kw9UnKo4TzPI9LkkHM3d8pSyPMkygFlpCKVILn7gQ8y3DKIoyh4lVVch6KIiKkjx463x8mKyZrulQ7LV0iXe7rYs-paAuBGHDk2PuO3Wi13QljT3AYxjlJCY5bKuyoQitjtKjoRjdrpg8UA217pm3PtLWlbc_U9exEpBMZB8ta6JP1v6q7Y9RCyXrrhH9ZSZI4DGdAfgFxMYrw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Zhang, Hongli</creator><creator>Liu, Shulin</creator><creator>Li, Dong</creator><creator>Shi, Kunju</creator><creator>Wang, Bo</creator><creator>Cui, Jiqiang</creator><general>Chinese Mechanical Engineering Society</general><general>Springer Nature B.V</general><general>Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China%School of Mechatronics Engineering and Automation,Shanghai University,Shanghai 200072,China%Training Center,Binzhou University,Binzhou 256600,China</general><general>School of Mechatronics Engineering and Automation,Shanghai University,Shanghai 200072,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150901</creationdate><title>Abnormality Degree Detection Method Using Negative Potential Field Group Detectors</title><author>Zhang, Hongli ; Liu, Shulin ; Li, Dong ; Shi, Kunju ; Wang, Bo ; Cui, Jiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Electrical Machines and Networks</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Instrumentation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Potential fields</topic><topic>Power Electronics</topic><topic>Processes</topic><topic>Sensors</topic><topic>Theoretical and Applied Mechanics</topic><topic>位场</topic><topic>在线监测方法</topic><topic>异常状态</topic><topic>探测器</topic><topic>检测结果</topic><topic>监测参数</topic><topic>监测结果</topic><topic>设备状态</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongli</creatorcontrib><creatorcontrib>Liu, Shulin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Shi, Kunju</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Cui, Jiqiang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongli</au><au>Liu, Shulin</au><au>Li, Dong</au><au>Shi, Kunju</au><au>Wang, Bo</au><au>Cui, Jiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abnormality Degree Detection Method Using Negative Potential Field Group Detectors</atitle><jtitle>Chinese journal of mechanical engineering</jtitle><stitle>Chin. J. Mech. Eng</stitle><addtitle>Chinese Journal of Mechanical Engineering</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>28</volume><issue>5</issue><spage>983</spage><epage>993</epage><pages>983-993</pages><issn>1000-9345</issn><eissn>2192-8258</eissn><abstract>Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.</abstract><cop>Beijing</cop><pub>Chinese Mechanical Engineering Society</pub><doi>10.3901/CJME.2015.0604.077</doi><tpages>11</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1000-9345
ispartof Chinese journal of mechanical engineering, 2015-09, Vol.28 (5), p.983-993
issn 1000-9345
2192-8258
language eng
recordid cdi_wanfang_journals_jxgcxb_e201505014
source Publicly Available Content Database
subjects Algorithms
Computer simulation
Datasets
Detectors
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Instrumentation
Machines
Manufacturing
Mechanical Engineering
Methods
Monitoring
Potential fields
Power Electronics
Processes
Sensors
Theoretical and Applied Mechanics
位场
在线监测方法
异常状态
探测器
检测结果
监测参数
监测结果
设备状态
title Abnormality Degree Detection Method Using Negative Potential Field Group Detectors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abnormality%20Degree%20Detection%20Method%20Using%20Negative%20Potential%20Field%20Group%20Detectors&rft.jtitle=Chinese%20journal%20of%20mechanical%20engineering&rft.au=Zhang,%20Hongli&rft.date=2015-09-01&rft.volume=28&rft.issue=5&rft.spage=983&rft.epage=993&rft.pages=983-993&rft.issn=1000-9345&rft.eissn=2192-8258&rft_id=info:doi/10.3901/CJME.2015.0604.077&rft_dat=%3Cwanfang_jour_proqu%3Ejxgcxb_e201505014%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259373154&rft_id=info:pmid/&rft_cqvip_id=666060180&rft_wanfj_id=jxgcxb_e201505014&rfr_iscdi=true