Loading…
Abnormality Degree Detection Method Using Negative Potential Field Group Detectors
Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive...
Saved in:
Published in: | Chinese journal of mechanical engineering 2015-09, Vol.28 (5), p.983-993 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433 |
container_end_page | 993 |
container_issue | 5 |
container_start_page | 983 |
container_title | Chinese journal of mechanical engineering |
container_volume | 28 |
creator | Zhang, Hongli Liu, Shulin Li, Dong Shi, Kunju Wang, Bo Cui, Jiqiang |
description | Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved. |
doi_str_mv | 10.3901/CJME.2015.0604.077 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_jxgcxb_e201505014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666060180</cqvip_id><wanfj_id>jxgcxb_e201505014</wanfj_id><sourcerecordid>jxgcxb_e201505014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433</originalsourceid><addsrcrecordid>eNp9kE9PAjEQxRujiYh-AU8bPXnYdbrdv0eCgBpQY-TctLvdZQm00BaFb283S-TmaTKT33tv8hC6xRCQHPDj8HU2CkLAcQAJRAGk6RnqhTgP_SyMs3PUwwDg5ySKL9GVMUu3JRhnPfQ54FLpNVs19uA9iVoL4YYVhW2U9GbCLlTpzU0ja-9N1Mw238L7UFZI27CVN27EqvQmWu02R5XS5hpdVGxlxM1x9tF8PPoaPvvT98nLcDD1C0Kw9UnKo4TzPI9LkkHM3d8pSyPMkygFlpCKVILn7gQ8y3DKIoyh4lVVch6KIiKkjx463x8mKyZrulQ7LV0iXe7rYs-paAuBGHDk2PuO3Wi13QljT3AYxjlJCY5bKuyoQitjtKjoRjdrpg8UA217pm3PtLWlbc_U9exEpBMZB8ta6JP1v6q7Y9RCyXrrhH9ZSZI4DGdAfgFxMYrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2259373154</pqid></control><display><type>article</type><title>Abnormality Degree Detection Method Using Negative Potential Field Group Detectors</title><source>Publicly Available Content Database</source><creator>Zhang, Hongli ; Liu, Shulin ; Li, Dong ; Shi, Kunju ; Wang, Bo ; Cui, Jiqiang</creator><creatorcontrib>Zhang, Hongli ; Liu, Shulin ; Li, Dong ; Shi, Kunju ; Wang, Bo ; Cui, Jiqiang</creatorcontrib><description>Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.</description><edition>English ed.</edition><identifier>ISSN: 1000-9345</identifier><identifier>EISSN: 2192-8258</identifier><identifier>DOI: 10.3901/CJME.2015.0604.077</identifier><language>eng</language><publisher>Beijing: Chinese Mechanical Engineering Society</publisher><subject>Algorithms ; Computer simulation ; Datasets ; Detectors ; Electrical Machines and Networks ; Electronics and Microelectronics ; Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Instrumentation ; Machines ; Manufacturing ; Mechanical Engineering ; Methods ; Monitoring ; Potential fields ; Power Electronics ; Processes ; Sensors ; Theoretical and Applied Mechanics ; 位场 ; 在线监测方法 ; 异常状态 ; 探测器 ; 检测结果 ; 监测参数 ; 监测结果 ; 设备状态</subject><ispartof>Chinese journal of mechanical engineering, 2015-09, Vol.28 (5), p.983-993</ispartof><rights>Chinese Mechanical Engineering Society and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Chinese Journal of Mechanical Engineering is a copyright of Springer, (2015). All Rights Reserved.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85891X/85891X.jpg</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2259373154?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zhang, Hongli</creatorcontrib><creatorcontrib>Liu, Shulin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Shi, Kunju</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Cui, Jiqiang</creatorcontrib><title>Abnormality Degree Detection Method Using Negative Potential Field Group Detectors</title><title>Chinese journal of mechanical engineering</title><addtitle>Chin. J. Mech. Eng</addtitle><addtitle>Chinese Journal of Mechanical Engineering</addtitle><description>Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Datasets</subject><subject>Detectors</subject><subject>Electrical Machines and Networks</subject><subject>Electronics and Microelectronics</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Instrumentation</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Mechanical Engineering</subject><subject>Methods</subject><subject>Monitoring</subject><subject>Potential fields</subject><subject>Power Electronics</subject><subject>Processes</subject><subject>Sensors</subject><subject>Theoretical and Applied Mechanics</subject><subject>位场</subject><subject>在线监测方法</subject><subject>异常状态</subject><subject>探测器</subject><subject>检测结果</subject><subject>监测参数</subject><subject>监测结果</subject><subject>设备状态</subject><issn>1000-9345</issn><issn>2192-8258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp9kE9PAjEQxRujiYh-AU8bPXnYdbrdv0eCgBpQY-TctLvdZQm00BaFb283S-TmaTKT33tv8hC6xRCQHPDj8HU2CkLAcQAJRAGk6RnqhTgP_SyMs3PUwwDg5ySKL9GVMUu3JRhnPfQ54FLpNVs19uA9iVoL4YYVhW2U9GbCLlTpzU0ja-9N1Mw238L7UFZI27CVN27EqvQmWu02R5XS5hpdVGxlxM1x9tF8PPoaPvvT98nLcDD1C0Kw9UnKo4TzPI9LkkHM3d8pSyPMkygFlpCKVILn7gQ8y3DKIoyh4lVVch6KIiKkjx463x8mKyZrulQ7LV0iXe7rYs-paAuBGHDk2PuO3Wi13QljT3AYxjlJCY5bKuyoQitjtKjoRjdrpg8UA217pm3PtLWlbc_U9exEpBMZB8ta6JP1v6q7Y9RCyXrrhH9ZSZI4DGdAfgFxMYrw</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Zhang, Hongli</creator><creator>Liu, Shulin</creator><creator>Li, Dong</creator><creator>Shi, Kunju</creator><creator>Wang, Bo</creator><creator>Cui, Jiqiang</creator><general>Chinese Mechanical Engineering Society</general><general>Springer Nature B.V</general><general>Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University,Shanghai 200072,China%School of Mechatronics Engineering and Automation,Shanghai University,Shanghai 200072,China%Training Center,Binzhou University,Binzhou 256600,China</general><general>School of Mechatronics Engineering and Automation,Shanghai University,Shanghai 200072,China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20150901</creationdate><title>Abnormality Degree Detection Method Using Negative Potential Field Group Detectors</title><author>Zhang, Hongli ; Liu, Shulin ; Li, Dong ; Shi, Kunju ; Wang, Bo ; Cui, Jiqiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Datasets</topic><topic>Detectors</topic><topic>Electrical Machines and Networks</topic><topic>Electronics and Microelectronics</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Instrumentation</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Mechanical Engineering</topic><topic>Methods</topic><topic>Monitoring</topic><topic>Potential fields</topic><topic>Power Electronics</topic><topic>Processes</topic><topic>Sensors</topic><topic>Theoretical and Applied Mechanics</topic><topic>位场</topic><topic>在线监测方法</topic><topic>异常状态</topic><topic>探测器</topic><topic>检测结果</topic><topic>监测参数</topic><topic>监测结果</topic><topic>设备状态</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Hongli</creatorcontrib><creatorcontrib>Liu, Shulin</creatorcontrib><creatorcontrib>Li, Dong</creatorcontrib><creatorcontrib>Shi, Kunju</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Cui, Jiqiang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese journal of mechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Hongli</au><au>Liu, Shulin</au><au>Li, Dong</au><au>Shi, Kunju</au><au>Wang, Bo</au><au>Cui, Jiqiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Abnormality Degree Detection Method Using Negative Potential Field Group Detectors</atitle><jtitle>Chinese journal of mechanical engineering</jtitle><stitle>Chin. J. Mech. Eng</stitle><addtitle>Chinese Journal of Mechanical Engineering</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>28</volume><issue>5</issue><spage>983</spage><epage>993</epage><pages>983-993</pages><issn>1000-9345</issn><eissn>2192-8258</eissn><abstract>Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.</abstract><cop>Beijing</cop><pub>Chinese Mechanical Engineering Society</pub><doi>10.3901/CJME.2015.0604.077</doi><tpages>11</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1000-9345 |
ispartof | Chinese journal of mechanical engineering, 2015-09, Vol.28 (5), p.983-993 |
issn | 1000-9345 2192-8258 |
language | eng |
recordid | cdi_wanfang_journals_jxgcxb_e201505014 |
source | Publicly Available Content Database |
subjects | Algorithms Computer simulation Datasets Detectors Electrical Machines and Networks Electronics and Microelectronics Engineering Engineering Thermodynamics Heat and Mass Transfer Instrumentation Machines Manufacturing Mechanical Engineering Methods Monitoring Potential fields Power Electronics Processes Sensors Theoretical and Applied Mechanics 位场 在线监测方法 异常状态 探测器 检测结果 监测参数 监测结果 设备状态 |
title | Abnormality Degree Detection Method Using Negative Potential Field Group Detectors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Abnormality%20Degree%20Detection%20Method%20Using%20Negative%20Potential%20Field%20Group%20Detectors&rft.jtitle=Chinese%20journal%20of%20mechanical%20engineering&rft.au=Zhang,%20Hongli&rft.date=2015-09-01&rft.volume=28&rft.issue=5&rft.spage=983&rft.epage=993&rft.pages=983-993&rft.issn=1000-9345&rft.eissn=2192-8258&rft_id=info:doi/10.3901/CJME.2015.0604.077&rft_dat=%3Cwanfang_jour_proqu%3Ejxgcxb_e201505014%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c331t-37b46bb995d3805b6047a741b6470a63f3feb97a70b8817a4110fbffdbb2ec433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2259373154&rft_id=info:pmid/&rft_cqvip_id=666060180&rft_wanfj_id=jxgcxb_e201505014&rfr_iscdi=true |