Loading…

Immobilization of biomacromolecules on poly-L-lactide surface via a layer-by-layer method for the improving of its cytocompatibility to bone marrow stromal cells

Hyaluronic acid (HA) and chitosan (CS) were immobilized on the surface of poly-L-lactide (PLLA) by the following procedure: Firstly, PLLA was aminolyzed with 1, 6-hexanediamine, and part of the PLLA surface ester groups were converted to free amino groups. Then negatively charged hyaluronic acid and...

Full description

Saved in:
Bibliographic Details
Published in:Chinese science bulletin 2005-12, Vol.50 (24), p.2809-2816
Main Authors: Lü, Delong, Meng, Sheng, Zhong, Wei, Du, Qiangguo, Gong, Li, Liu, Jinfen, Dusan, Bakos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hyaluronic acid (HA) and chitosan (CS) were immobilized on the surface of poly-L-lactide (PLLA) by the following procedure: Firstly, PLLA was aminolyzed with 1, 6-hexanediamine, and part of the PLLA surface ester groups were converted to free amino groups. Then negatively charged hyaluronic acid and positively charged chitosan were deposited onto the surface of aminolyzed PLLA film in a layer-by-layer assembly manner. The effect of the layer-by- layer deposition was evaluated by ATRoFTIR spectroscopy, Raman spectroscopy and static contact angle measurements. The cytocompatibility of PLLA sample to bone marrow stromal cells (BMSCs) was improved after modification with chitosan and HA. The cell attachment, activity, and proliferation on CS/HA modified PLLA films were enhanced comparing with the control. The cells cultured on the modified PLLA samples excreted abundant cytoplasm and can differentiate to vascular smooth muscle (SM)-like (SM-like) cells. A macroporous three-dimensional PLLA scaffold was prepared by integrating both the technique of freeze-drying and particle leaching. Layer-by-layer modification by HA/CS and cell culture was also applied on this scaffold. The scaffold cultured with BMSCs for 2 weeks has been tested successfully in vivo as a patch for repairing the artificial incision on canine pulmonary artery.
ISSN:1001-6538
2095-9273
1861-9541
2095-9281
DOI:10.1360/982005-707