Loading…
MPC-based torque control of permanent magnet synchronous motor for electric vehicles via switching optimization
In order to effectively achieve torque demand in electric vehicles (EVs), this paper presents a torque control strategy based on model predictive control (MPC) for permanent magnet synchronous motor (PMSM) driven by a two-level three-phase inverter. A centralized control strategy is established in t...
Saved in:
Published in: | Control theory and technology 2017-05, Vol.15 (2), p.138-149 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2937-ee985ff27763efd4db895e2e412dcbbc0711b0d783ae338cba409d99097e8d3d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c2937-ee985ff27763efd4db895e2e412dcbbc0711b0d783ae338cba409d99097e8d3d3 |
container_end_page | 149 |
container_issue | 2 |
container_start_page | 138 |
container_title | Control theory and technology |
container_volume | 15 |
creator | Ren, Bingtao Chen, Hong Zhao, Haiyan Xu, Wei |
description | In order to effectively achieve torque demand in electric vehicles (EVs), this paper presents a torque control strategy based on model predictive control (MPC) for permanent magnet synchronous motor (PMSM) driven by a two-level three-phase inverter. A centralized control strategy is established in the MPC framework to track the torque demand and reduce energy loss, by directly optimizing the switch states of inverter. To fast determine the optimal control sequence in predictive process, a searching tree is built to look for optimal inputs by dynamic programming (DP) algorithm on the basis of the principle of optimality. Then we design a pruning method to check the candidate inputs that can enter the next predictive loop in order to decrease the computational burden of evaluation of input sequences. Finally, the simulation results on different conditions indicate that the proposed strategy can achieve a tradeoff between control performance and computational efficiency. |
doi_str_mv | 10.1007/s11768-017-6193-z |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_kzllyyy_e201702007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>672381384</cqvip_id><wanfj_id>kzllyyy_e201702007</wanfj_id><sourcerecordid>kzllyyy_e201702007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-ee985ff27763efd4db895e2e412dcbbc0711b0d783ae338cba409d99097e8d3d3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhU1JoSHJD-hNtLeCG43ktaRjWZqkkNAe2rOQ5bFXqS1tJG2C99dXwaHtKQchIb73hnmvqt4D_QyUissEIFpZUxB1C4rXxzfVKQNVflTDTsqbqk3dKsnfVRcp3VNKoQHBuTytwt2Pbd2ZhD3JIT4ckNjgcwwTCQPZY5yNR5_JbEaPmaTF210MPhwSmUMRkKEcnNDm6Cx5xJ2zEyby6AxJTy7bnfMjCfvsZnc02QV_Xr0dzJTw4uU-q35dff25valvv19_2365rS1TXNSISm6GgQnRchz6pu-k2iDDBlhvu85SAdDRXkhusOxhO9NQ1StFlUDZ856fVZ9W3yfjB-NHfR8O0ZeJ-vdxmpZl0chKXpSV_Ar8cYX3MZQIUv5Hg6KsUVIBKxSslI0hpYiD3kc3m7hooPq5B732oIuvfu5BH4uGrZpUWD9i_M_5FdGHl0G74MeHovs7qRWMS-Cy4X8AhhSZCw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1902498912</pqid></control><display><type>article</type><title>MPC-based torque control of permanent magnet synchronous motor for electric vehicles via switching optimization</title><source>Springer Link</source><creator>Ren, Bingtao ; Chen, Hong ; Zhao, Haiyan ; Xu, Wei</creator><creatorcontrib>Ren, Bingtao ; Chen, Hong ; Zhao, Haiyan ; Xu, Wei</creatorcontrib><description>In order to effectively achieve torque demand in electric vehicles (EVs), this paper presents a torque control strategy based on model predictive control (MPC) for permanent magnet synchronous motor (PMSM) driven by a two-level three-phase inverter. A centralized control strategy is established in the MPC framework to track the torque demand and reduce energy loss, by directly optimizing the switch states of inverter. To fast determine the optimal control sequence in predictive process, a searching tree is built to look for optimal inputs by dynamic programming (DP) algorithm on the basis of the principle of optimality. Then we design a pruning method to check the candidate inputs that can enter the next predictive loop in order to decrease the computational burden of evaluation of input sequences. Finally, the simulation results on different conditions indicate that the proposed strategy can achieve a tradeoff between control performance and computational efficiency.</description><identifier>ISSN: 2095-6983</identifier><identifier>EISSN: 2198-0942</identifier><identifier>DOI: 10.1007/s11768-017-6193-z</identifier><language>eng</language><publisher>Guangzhou: South China University of Technology and Academy of Mathematics and Systems Science, CAS</publisher><subject>Complexity ; Computational Intelligence ; Computer simulation ; Computing time ; Control ; Control and Systems Theory ; Dynamic programming ; Electric vehicles ; Engineering ; Mechatronics ; Motors ; MPC ; Optimal control ; Optimization ; Permanent magnets ; Predictive control ; Pruning ; Robotics ; Sequences ; Strategy ; Switching ; Synchronous motors ; Systems Theory ; Torque ; 优化控制 ; 最优输入 ; 模型预测控制 ; 永磁同步 ; 电动汽车 ; 电机转矩 ; 计算效率</subject><ispartof>Control theory and technology, 2017-05, Vol.15 (2), p.138-149</ispartof><rights>South China University of Technology, Academy of Mathematics and Systems Science, Chinese Academy of Sciences and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-ee985ff27763efd4db895e2e412dcbbc0711b0d783ae338cba409d99097e8d3d3</citedby><cites>FETCH-LOGICAL-c2937-ee985ff27763efd4db895e2e412dcbbc0711b0d783ae338cba409d99097e8d3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87672X/87672X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Ren, Bingtao</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Zhao, Haiyan</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><title>MPC-based torque control of permanent magnet synchronous motor for electric vehicles via switching optimization</title><title>Control theory and technology</title><addtitle>Control Theory Technol</addtitle><addtitle>Journal of Control Theory and Applications</addtitle><description>In order to effectively achieve torque demand in electric vehicles (EVs), this paper presents a torque control strategy based on model predictive control (MPC) for permanent magnet synchronous motor (PMSM) driven by a two-level three-phase inverter. A centralized control strategy is established in the MPC framework to track the torque demand and reduce energy loss, by directly optimizing the switch states of inverter. To fast determine the optimal control sequence in predictive process, a searching tree is built to look for optimal inputs by dynamic programming (DP) algorithm on the basis of the principle of optimality. Then we design a pruning method to check the candidate inputs that can enter the next predictive loop in order to decrease the computational burden of evaluation of input sequences. Finally, the simulation results on different conditions indicate that the proposed strategy can achieve a tradeoff between control performance and computational efficiency.</description><subject>Complexity</subject><subject>Computational Intelligence</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>Control</subject><subject>Control and Systems Theory</subject><subject>Dynamic programming</subject><subject>Electric vehicles</subject><subject>Engineering</subject><subject>Mechatronics</subject><subject>Motors</subject><subject>MPC</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Permanent magnets</subject><subject>Predictive control</subject><subject>Pruning</subject><subject>Robotics</subject><subject>Sequences</subject><subject>Strategy</subject><subject>Switching</subject><subject>Synchronous motors</subject><subject>Systems Theory</subject><subject>Torque</subject><subject>优化控制</subject><subject>最优输入</subject><subject>模型预测控制</subject><subject>永磁同步</subject><subject>电动汽车</subject><subject>电机转矩</subject><subject>计算效率</subject><issn>2095-6983</issn><issn>2198-0942</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhU1JoSHJD-hNtLeCG43ktaRjWZqkkNAe2rOQ5bFXqS1tJG2C99dXwaHtKQchIb73hnmvqt4D_QyUissEIFpZUxB1C4rXxzfVKQNVflTDTsqbqk3dKsnfVRcp3VNKoQHBuTytwt2Pbd2ZhD3JIT4ckNjgcwwTCQPZY5yNR5_JbEaPmaTF210MPhwSmUMRkKEcnNDm6Cx5xJ2zEyby6AxJTy7bnfMjCfvsZnc02QV_Xr0dzJTw4uU-q35dff25valvv19_2365rS1TXNSISm6GgQnRchz6pu-k2iDDBlhvu85SAdDRXkhusOxhO9NQ1StFlUDZ856fVZ9W3yfjB-NHfR8O0ZeJ-vdxmpZl0chKXpSV_Ar8cYX3MZQIUv5Hg6KsUVIBKxSslI0hpYiD3kc3m7hooPq5B732oIuvfu5BH4uGrZpUWD9i_M_5FdGHl0G74MeHovs7qRWMS-Cy4X8AhhSZCw</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Ren, Bingtao</creator><creator>Chen, Hong</creator><creator>Zhao, Haiyan</creator><creator>Xu, Wei</creator><general>South China University of Technology and Academy of Mathematics and Systems Science, CAS</general><general>Springer Nature B.V</general><general>State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun Jilin 130025, China</general><general>Department of Control Science and Engineering, Jilin University, Changchun Jilin 130025, China%Department of Control Science and Engineering, Jilin University, Changchun Jilin 130025, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20170501</creationdate><title>MPC-based torque control of permanent magnet synchronous motor for electric vehicles via switching optimization</title><author>Ren, Bingtao ; Chen, Hong ; Zhao, Haiyan ; Xu, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-ee985ff27763efd4db895e2e412dcbbc0711b0d783ae338cba409d99097e8d3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complexity</topic><topic>Computational Intelligence</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>Control</topic><topic>Control and Systems Theory</topic><topic>Dynamic programming</topic><topic>Electric vehicles</topic><topic>Engineering</topic><topic>Mechatronics</topic><topic>Motors</topic><topic>MPC</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Permanent magnets</topic><topic>Predictive control</topic><topic>Pruning</topic><topic>Robotics</topic><topic>Sequences</topic><topic>Strategy</topic><topic>Switching</topic><topic>Synchronous motors</topic><topic>Systems Theory</topic><topic>Torque</topic><topic>优化控制</topic><topic>最优输入</topic><topic>模型预测控制</topic><topic>永磁同步</topic><topic>电动汽车</topic><topic>电机转矩</topic><topic>计算效率</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Bingtao</creatorcontrib><creatorcontrib>Chen, Hong</creatorcontrib><creatorcontrib>Zhao, Haiyan</creatorcontrib><creatorcontrib>Xu, Wei</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Control theory and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Bingtao</au><au>Chen, Hong</au><au>Zhao, Haiyan</au><au>Xu, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MPC-based torque control of permanent magnet synchronous motor for electric vehicles via switching optimization</atitle><jtitle>Control theory and technology</jtitle><stitle>Control Theory Technol</stitle><addtitle>Journal of Control Theory and Applications</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>15</volume><issue>2</issue><spage>138</spage><epage>149</epage><pages>138-149</pages><issn>2095-6983</issn><eissn>2198-0942</eissn><abstract>In order to effectively achieve torque demand in electric vehicles (EVs), this paper presents a torque control strategy based on model predictive control (MPC) for permanent magnet synchronous motor (PMSM) driven by a two-level three-phase inverter. A centralized control strategy is established in the MPC framework to track the torque demand and reduce energy loss, by directly optimizing the switch states of inverter. To fast determine the optimal control sequence in predictive process, a searching tree is built to look for optimal inputs by dynamic programming (DP) algorithm on the basis of the principle of optimality. Then we design a pruning method to check the candidate inputs that can enter the next predictive loop in order to decrease the computational burden of evaluation of input sequences. Finally, the simulation results on different conditions indicate that the proposed strategy can achieve a tradeoff between control performance and computational efficiency.</abstract><cop>Guangzhou</cop><pub>South China University of Technology and Academy of Mathematics and Systems Science, CAS</pub><doi>10.1007/s11768-017-6193-z</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-6983 |
ispartof | Control theory and technology, 2017-05, Vol.15 (2), p.138-149 |
issn | 2095-6983 2198-0942 |
language | eng |
recordid | cdi_wanfang_journals_kzllyyy_e201702007 |
source | Springer Link |
subjects | Complexity Computational Intelligence Computer simulation Computing time Control Control and Systems Theory Dynamic programming Electric vehicles Engineering Mechatronics Motors MPC Optimal control Optimization Permanent magnets Predictive control Pruning Robotics Sequences Strategy Switching Synchronous motors Systems Theory Torque 优化控制 最优输入 模型预测控制 永磁同步 电动汽车 电机转矩 计算效率 |
title | MPC-based torque control of permanent magnet synchronous motor for electric vehicles via switching optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MPC-based%20torque%20control%20of%20permanent%20magnet%20synchronous%20motor%20for%20electric%20vehicles%20via%20switching%20optimization&rft.jtitle=Control%20theory%20and%20technology&rft.au=Ren,%20Bingtao&rft.date=2017-05-01&rft.volume=15&rft.issue=2&rft.spage=138&rft.epage=149&rft.pages=138-149&rft.issn=2095-6983&rft.eissn=2198-0942&rft_id=info:doi/10.1007/s11768-017-6193-z&rft_dat=%3Cwanfang_jour_proqu%3Ekzllyyy_e201702007%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2937-ee985ff27763efd4db895e2e412dcbbc0711b0d783ae338cba409d99097e8d3d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1902498912&rft_id=info:pmid/&rft_cqvip_id=672381384&rft_wanfj_id=kzllyyy_e201702007&rfr_iscdi=true |