Loading…
Green's Function Method for Perturbed sine-Gordon Equation
The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of...
Saved in:
Published in: | Communications in theoretical physics 2004-06, Vol.41 (6), p.907-910 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 910 |
container_issue | 6 |
container_start_page | 907 |
container_title | Communications in theoretical physics |
container_volume | 41 |
creator | Feng-Ming, Liu Hao, Cai Zheng-You, Liu Nian-Ning, Huang |
description | The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of the eigenfunctions of linearized equation is unavailable. And the explicit expressions of Jost solutions are not necessary here. Thus a general method of direct perturbation method for the perturbed sine-Gordon equation is developed. |
doi_str_mv | 10.1088/0253-6102/41/6/907 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_llwltx_e200406022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>llwltx_e200406022</wanfj_id><sourcerecordid>llwltx_e200406022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-6fbb27af625a1e2c27ce872b79746a980f5e74a50ea939c93f39d8767a0385c33</originalsourceid><addsrcrecordid>eNo9kMFKxDAURbNQcBz9AVfdiYval6RNGncyzFRhRBe6Dmn6oh1qqknL6N9Py4irC5fDvXAIuaJwS6EsM2AFTwUFluU0E5kCeUIW_-UZOY9xBwBMCrogd1VA9Ncx2YzeDm3vkyccPvomcX1IXjAMY6ixSWLrMa360EzA-ns0M3lBTp3pIl7-5ZK8bdavq4d0-1w9ru63qWUchlS4umbSOMEKQ5FZJi2WktVSyVwYVYIrUOamADSKK6u446oppZAGeFlYzpfk5ri7N94Z_653_Rj89Ki7bt8NPxoZQA4CGJtYdmRt6GMM6PRXaD9N-NUU9GxHzyL0LELnVAs92eEHYrxYfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Green's Function Method for Perturbed sine-Gordon Equation</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Feng-Ming, Liu ; Hao, Cai ; Zheng-You, Liu ; Nian-Ning, Huang</creator><creatorcontrib>Feng-Ming, Liu ; Hao, Cai ; Zheng-You, Liu ; Nian-Ning, Huang</creatorcontrib><description>The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of the eigenfunctions of linearized equation is unavailable. And the explicit expressions of Jost solutions are not necessary here. Thus a general method of direct perturbation method for the perturbed sine-Gordon equation is developed.</description><identifier>ISSN: 0253-6102</identifier><identifier>DOI: 10.1088/0253-6102/41/6/907</identifier><language>eng</language><publisher>Department of Physics, Wuhan University, Wuhan 430072, China</publisher><ispartof>Communications in theoretical physics, 2004-06, Vol.41 (6), p.907-910</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/llwltx-e/llwltx-e.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Feng-Ming, Liu</creatorcontrib><creatorcontrib>Hao, Cai</creatorcontrib><creatorcontrib>Zheng-You, Liu</creatorcontrib><creatorcontrib>Nian-Ning, Huang</creatorcontrib><title>Green's Function Method for Perturbed sine-Gordon Equation</title><title>Communications in theoretical physics</title><description>The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of the eigenfunctions of linearized equation is unavailable. And the explicit expressions of Jost solutions are not necessary here. Thus a general method of direct perturbation method for the perturbed sine-Gordon equation is developed.</description><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKxDAURbNQcBz9AVfdiYval6RNGncyzFRhRBe6Dmn6oh1qqknL6N9Py4irC5fDvXAIuaJwS6EsM2AFTwUFluU0E5kCeUIW_-UZOY9xBwBMCrogd1VA9Ncx2YzeDm3vkyccPvomcX1IXjAMY6ixSWLrMa360EzA-ns0M3lBTp3pIl7-5ZK8bdavq4d0-1w9ru63qWUchlS4umbSOMEKQ5FZJi2WktVSyVwYVYIrUOamADSKK6u446oppZAGeFlYzpfk5ri7N94Z_653_Rj89Ki7bt8NPxoZQA4CGJtYdmRt6GMM6PRXaD9N-NUU9GxHzyL0LELnVAs92eEHYrxYfg</recordid><startdate>20040615</startdate><enddate>20040615</enddate><creator>Feng-Ming, Liu</creator><creator>Hao, Cai</creator><creator>Zheng-You, Liu</creator><creator>Nian-Ning, Huang</creator><general>Department of Physics, Wuhan University, Wuhan 430072, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20040615</creationdate><title>Green's Function Method for Perturbed sine-Gordon Equation</title><author>Feng-Ming, Liu ; Hao, Cai ; Zheng-You, Liu ; Nian-Ning, Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-6fbb27af625a1e2c27ce872b79746a980f5e74a50ea939c93f39d8767a0385c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng-Ming, Liu</creatorcontrib><creatorcontrib>Hao, Cai</creatorcontrib><creatorcontrib>Zheng-You, Liu</creatorcontrib><creatorcontrib>Nian-Ning, Huang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Communications in theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng-Ming, Liu</au><au>Hao, Cai</au><au>Zheng-You, Liu</au><au>Nian-Ning, Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green's Function Method for Perturbed sine-Gordon Equation</atitle><jtitle>Communications in theoretical physics</jtitle><date>2004-06-15</date><risdate>2004</risdate><volume>41</volume><issue>6</issue><spage>907</spage><epage>910</epage><pages>907-910</pages><issn>0253-6102</issn><abstract>The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of the eigenfunctions of linearized equation is unavailable. And the explicit expressions of Jost solutions are not necessary here. Thus a general method of direct perturbation method for the perturbed sine-Gordon equation is developed.</abstract><pub>Department of Physics, Wuhan University, Wuhan 430072, China</pub><doi>10.1088/0253-6102/41/6/907</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-6102 |
ispartof | Communications in theoretical physics, 2004-06, Vol.41 (6), p.907-910 |
issn | 0253-6102 |
language | eng |
recordid | cdi_wanfang_journals_llwltx_e200406022 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
title | Green's Function Method for Perturbed sine-Gordon Equation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green's%20Function%20Method%20for%20Perturbed%20sine-Gordon%20Equation&rft.jtitle=Communications%20in%20theoretical%20physics&rft.au=Feng-Ming,%20Liu&rft.date=2004-06-15&rft.volume=41&rft.issue=6&rft.spage=907&rft.epage=910&rft.pages=907-910&rft.issn=0253-6102&rft_id=info:doi/10.1088/0253-6102/41/6/907&rft_dat=%3Cwanfang_jour_cross%3Ellwltx_e200406022%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-6fbb27af625a1e2c27ce872b79746a980f5e74a50ea939c93f39d8767a0385c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=llwltx_e200406022&rfr_iscdi=true |