Loading…

Green's Function Method for Perturbed sine-Gordon Equation

The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of...

Full description

Saved in:
Bibliographic Details
Published in:Communications in theoretical physics 2004-06, Vol.41 (6), p.907-910
Main Authors: Feng-Ming, Liu, Hao, Cai, Zheng-You, Liu, Nian-Ning, Huang
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 910
container_issue 6
container_start_page 907
container_title Communications in theoretical physics
container_volume 41
creator Feng-Ming, Liu
Hao, Cai
Zheng-You, Liu
Nian-Ning, Huang
description The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of the eigenfunctions of linearized equation is unavailable. And the explicit expressions of Jost solutions are not necessary here. Thus a general method of direct perturbation method for the perturbed sine-Gordon equation is developed.
doi_str_mv 10.1088/0253-6102/41/6/907
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_llwltx_e200406022</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>llwltx_e200406022</wanfj_id><sourcerecordid>llwltx_e200406022</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230t-6fbb27af625a1e2c27ce872b79746a980f5e74a50ea939c93f39d8767a0385c33</originalsourceid><addsrcrecordid>eNo9kMFKxDAURbNQcBz9AVfdiYval6RNGncyzFRhRBe6Dmn6oh1qqknL6N9Py4irC5fDvXAIuaJwS6EsM2AFTwUFluU0E5kCeUIW_-UZOY9xBwBMCrogd1VA9Ncx2YzeDm3vkyccPvomcX1IXjAMY6ixSWLrMa360EzA-ns0M3lBTp3pIl7-5ZK8bdavq4d0-1w9ru63qWUchlS4umbSOMEKQ5FZJi2WktVSyVwYVYIrUOamADSKK6u446oppZAGeFlYzpfk5ri7N94Z_653_Rj89Ki7bt8NPxoZQA4CGJtYdmRt6GMM6PRXaD9N-NUU9GxHzyL0LELnVAs92eEHYrxYfg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Green's Function Method for Perturbed sine-Gordon Equation</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Feng-Ming, Liu ; Hao, Cai ; Zheng-You, Liu ; Nian-Ning, Huang</creator><creatorcontrib>Feng-Ming, Liu ; Hao, Cai ; Zheng-You, Liu ; Nian-Ning, Huang</creatorcontrib><description>The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of the eigenfunctions of linearized equation is unavailable. And the explicit expressions of Jost solutions are not necessary here. Thus a general method of direct perturbation method for the perturbed sine-Gordon equation is developed.</description><identifier>ISSN: 0253-6102</identifier><identifier>DOI: 10.1088/0253-6102/41/6/907</identifier><language>eng</language><publisher>Department of Physics, Wuhan University, Wuhan 430072, China</publisher><ispartof>Communications in theoretical physics, 2004-06, Vol.41 (6), p.907-910</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/llwltx-e/llwltx-e.jpg</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Feng-Ming, Liu</creatorcontrib><creatorcontrib>Hao, Cai</creatorcontrib><creatorcontrib>Zheng-You, Liu</creatorcontrib><creatorcontrib>Nian-Ning, Huang</creatorcontrib><title>Green's Function Method for Perturbed sine-Gordon Equation</title><title>Communications in theoretical physics</title><description>The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of the eigenfunctions of linearized equation is unavailable. And the explicit expressions of Jost solutions are not necessary here. Thus a general method of direct perturbation method for the perturbed sine-Gordon equation is developed.</description><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo9kMFKxDAURbNQcBz9AVfdiYval6RNGncyzFRhRBe6Dmn6oh1qqknL6N9Py4irC5fDvXAIuaJwS6EsM2AFTwUFluU0E5kCeUIW_-UZOY9xBwBMCrogd1VA9Ncx2YzeDm3vkyccPvomcX1IXjAMY6ixSWLrMa360EzA-ns0M3lBTp3pIl7-5ZK8bdavq4d0-1w9ru63qWUchlS4umbSOMEKQ5FZJi2WktVSyVwYVYIrUOamADSKK6u446oppZAGeFlYzpfk5ri7N94Z_653_Rj89Ki7bt8NPxoZQA4CGJtYdmRt6GMM6PRXaD9N-NUU9GxHzyL0LELnVAs92eEHYrxYfg</recordid><startdate>20040615</startdate><enddate>20040615</enddate><creator>Feng-Ming, Liu</creator><creator>Hao, Cai</creator><creator>Zheng-You, Liu</creator><creator>Nian-Ning, Huang</creator><general>Department of Physics, Wuhan University, Wuhan 430072, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20040615</creationdate><title>Green's Function Method for Perturbed sine-Gordon Equation</title><author>Feng-Ming, Liu ; Hao, Cai ; Zheng-You, Liu ; Nian-Ning, Huang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230t-6fbb27af625a1e2c27ce872b79746a980f5e74a50ea939c93f39d8767a0385c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng-Ming, Liu</creatorcontrib><creatorcontrib>Hao, Cai</creatorcontrib><creatorcontrib>Zheng-You, Liu</creatorcontrib><creatorcontrib>Nian-Ning, Huang</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Communications in theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng-Ming, Liu</au><au>Hao, Cai</au><au>Zheng-You, Liu</au><au>Nian-Ning, Huang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green's Function Method for Perturbed sine-Gordon Equation</atitle><jtitle>Communications in theoretical physics</jtitle><date>2004-06-15</date><risdate>2004</risdate><volume>41</volume><issue>6</issue><spage>907</spage><epage>910</epage><pages>907-910</pages><issn>0253-6102</issn><abstract>The usual Green's function method is introduced to show the completeness of the squared Jost solutions of the multi-soliton case in this work. Since sine-Gordon equation contains second derivative in time, the known procedure with generalized Marchenko equation to show completeness relation of the eigenfunctions of linearized equation is unavailable. And the explicit expressions of Jost solutions are not necessary here. Thus a general method of direct perturbation method for the perturbed sine-Gordon equation is developed.</abstract><pub>Department of Physics, Wuhan University, Wuhan 430072, China</pub><doi>10.1088/0253-6102/41/6/907</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0253-6102
ispartof Communications in theoretical physics, 2004-06, Vol.41 (6), p.907-910
issn 0253-6102
language eng
recordid cdi_wanfang_journals_llwltx_e200406022
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
title Green's Function Method for Perturbed sine-Gordon Equation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T11%3A26%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green's%20Function%20Method%20for%20Perturbed%20sine-Gordon%20Equation&rft.jtitle=Communications%20in%20theoretical%20physics&rft.au=Feng-Ming,%20Liu&rft.date=2004-06-15&rft.volume=41&rft.issue=6&rft.spage=907&rft.epage=910&rft.pages=907-910&rft.issn=0253-6102&rft_id=info:doi/10.1088/0253-6102/41/6/907&rft_dat=%3Cwanfang_jour_cross%3Ellwltx_e200406022%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c230t-6fbb27af625a1e2c27ce872b79746a980f5e74a50ea939c93f39d8767a0385c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=llwltx_e200406022&rfr_iscdi=true