Loading…
Conservation Laws of K(m, n) and mK(m, n) Equations
Based on the rank analysis method, algorithmization idea, and symbolic computation, in this paper we have presented a method to construct the conservation laws for nonlinear evolution equations. The polynomial conservation laws for K (n + 2, n) equations and mnK(m, n) equations are found by using of...
Saved in:
Published in: | Communications in theoretical physics 2004, Vol.42 (11), p.661-663 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 663 |
container_issue | 11 |
container_start_page | 661 |
container_title | Communications in theoretical physics |
container_volume | 42 |
creator | XIE Fu-Ding Xiao-Shan LIU Feng |
description | Based on the rank analysis method, algorithmization idea, and symbolic computation, in this paper we have presented a method to construct the conservation laws for nonlinear evolution equations. The polynomial conservation laws for K (n + 2, n) equations and mnK(m, n) equations are found by using of this approach and some new results have been obtained. |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_chong</sourceid><recordid>TN_cdi_wanfang_journals_llwltx_e200411005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>1000302767</cqvip_id><wanfj_id>llwltx_e200411005</wanfj_id><sourcerecordid>llwltx_e200411005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c635-8d9bd0fc748866c65235a01f2c9858bb248351c4436fa5aa4426f5fa4223d4583</originalsourceid><addsrcrecordid>eNo1z09Lw0AQBfA9KLTWfoc9eLBgYPbPbLZHCVWLAS-9h8kmW1PTXdptjR_faPU0PPjxHnPFpiBRZUaAnLCblHYAIHMjpkwVMaT2-EmnLgZe0pB49Pz1fv_Aw4JTaPj-P6wO51-Vbtm1pz618787Y5un1aZ4ycq353XxWGbOKMxss6wb8C7X1hrjDEqFBMJLt7Ro61pqq1A4rZXxhERaS-PRk5ZSNRqtmrHFpXag4Clsq108H8M4WPX90J--qlYCaCEAcLR3F-veY9geulHX5D5817fVCED9vJurbyEhSis</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Conservation Laws of K(m, n) and mK(m, n) Equations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>XIE Fu-Ding Xiao-Shan LIU Feng</creator><creatorcontrib>XIE Fu-Ding Xiao-Shan LIU Feng</creatorcontrib><description>Based on the rank analysis method, algorithmization idea, and symbolic computation, in this paper we have presented a method to construct the conservation laws for nonlinear evolution equations. The polynomial conservation laws for K (n + 2, n) equations and mnK(m, n) equations are found by using of this approach and some new results have been obtained.</description><identifier>ISSN: 0253-6102</identifier><language>eng</language><publisher>Key Laboratory of Mathematics and Mechanization, Academy of Mathematics and System Sciences, the Chinese Academy of Sciences, Beijing 100080, China</publisher><subject>and ; computation ; conservation ; equations ; K(m ; law ; mK(m ; symbolic</subject><ispartof>Communications in theoretical physics, 2004, Vol.42 (11), p.661-663</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/83837X/83837X.jpg</thumbnail><link.rule.ids>314,780,784,4024</link.rule.ids></links><search><creatorcontrib>XIE Fu-Ding Xiao-Shan LIU Feng</creatorcontrib><title>Conservation Laws of K(m, n) and mK(m, n) Equations</title><title>Communications in theoretical physics</title><addtitle>Communications in Theoretical Physics</addtitle><description>Based on the rank analysis method, algorithmization idea, and symbolic computation, in this paper we have presented a method to construct the conservation laws for nonlinear evolution equations. The polynomial conservation laws for K (n + 2, n) equations and mnK(m, n) equations are found by using of this approach and some new results have been obtained.</description><subject>and</subject><subject>computation</subject><subject>conservation</subject><subject>equations</subject><subject>K(m</subject><subject>law</subject><subject>mK(m</subject><subject>symbolic</subject><issn>0253-6102</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNo1z09Lw0AQBfA9KLTWfoc9eLBgYPbPbLZHCVWLAS-9h8kmW1PTXdptjR_faPU0PPjxHnPFpiBRZUaAnLCblHYAIHMjpkwVMaT2-EmnLgZe0pB49Pz1fv_Aw4JTaPj-P6wO51-Vbtm1pz618787Y5un1aZ4ycq353XxWGbOKMxss6wb8C7X1hrjDEqFBMJLt7Ro61pqq1A4rZXxhERaS-PRk5ZSNRqtmrHFpXag4Clsq108H8M4WPX90J--qlYCaCEAcLR3F-veY9geulHX5D5817fVCED9vJurbyEhSis</recordid><startdate>2004</startdate><enddate>2004</enddate><creator>XIE Fu-Ding Xiao-Shan LIU Feng</creator><general>Key Laboratory of Mathematics and Mechanization, Academy of Mathematics and System Sciences, the Chinese Academy of Sciences, Beijing 100080, China</general><general>Department of Computer Science, Liaoning Normal University, Dalian 116029, China%Key Laboratory of Mathematics and Mechanization, Academy of Mathematics and System Sciences, the Chinese Academy of Sciences, Beijing 100080, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2004</creationdate><title>Conservation Laws of K(m, n) and mK(m, n) Equations</title><author>XIE Fu-Ding Xiao-Shan LIU Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c635-8d9bd0fc748866c65235a01f2c9858bb248351c4436fa5aa4426f5fa4223d4583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>and</topic><topic>computation</topic><topic>conservation</topic><topic>equations</topic><topic>K(m</topic><topic>law</topic><topic>mK(m</topic><topic>symbolic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>XIE Fu-Ding Xiao-Shan LIU Feng</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Communications in theoretical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>XIE Fu-Ding Xiao-Shan LIU Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation Laws of K(m, n) and mK(m, n) Equations</atitle><jtitle>Communications in theoretical physics</jtitle><addtitle>Communications in Theoretical Physics</addtitle><date>2004</date><risdate>2004</risdate><volume>42</volume><issue>11</issue><spage>661</spage><epage>663</epage><pages>661-663</pages><issn>0253-6102</issn><abstract>Based on the rank analysis method, algorithmization idea, and symbolic computation, in this paper we have presented a method to construct the conservation laws for nonlinear evolution equations. The polynomial conservation laws for K (n + 2, n) equations and mnK(m, n) equations are found by using of this approach and some new results have been obtained.</abstract><pub>Key Laboratory of Mathematics and Mechanization, Academy of Mathematics and System Sciences, the Chinese Academy of Sciences, Beijing 100080, China</pub><tpages>3</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-6102 |
ispartof | Communications in theoretical physics, 2004, Vol.42 (11), p.661-663 |
issn | 0253-6102 |
language | eng |
recordid | cdi_wanfang_journals_llwltx_e200411005 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | and computation conservation equations K(m law mK(m symbolic |
title | Conservation Laws of K(m, n) and mK(m, n) Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A43%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_chong&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20Laws%20of%20K(m,%20n)%20and%20mK(m,%20n)%20Equations&rft.jtitle=Communications%20in%20theoretical%20physics&rft.au=XIE%20Fu-Ding%20Xiao-Shan%20LIU%20Feng&rft.date=2004&rft.volume=42&rft.issue=11&rft.spage=661&rft.epage=663&rft.pages=661-663&rft.issn=0253-6102&rft_id=info:doi/&rft_dat=%3Cwanfang_jour_chong%3Ellwltx_e200411005%3C/wanfang_jour_chong%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c635-8d9bd0fc748866c65235a01f2c9858bb248351c4436fa5aa4426f5fa4223d4583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=1000302767&rft_wanfj_id=llwltx_e200411005&rfr_iscdi=true |