Loading…
Analytical method for the attitude stability of partially liquid filled spacecraft with flexible appendage
In this paper, the attitude stability of liquidfilled spacecraft with flexible appendage is investigated. The motion of liquid sloshing is modeled as the spherical pendulum,and the flexible appendage is approached by a linear shearing beam. Nonlinear dynamic equations of the coupled system are deriv...
Saved in:
Published in: | Acta mechanica Sinica 2017-02, Vol.33 (1), p.208-218 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, the attitude stability of liquidfilled spacecraft with flexible appendage is investigated. The motion of liquid sloshing is modeled as the spherical pendulum,and the flexible appendage is approached by a linear shearing beam. Nonlinear dynamic equations of the coupled system are derived from the Hamiltonian. The stability of the coupled system was analyzed by using the energy-Casimir method, and the nonlinear stability theorem of the coupled spacecraft system was also obtained. Through numerical computation, the correctness of the proposed theorem is verified and the boundary curves of the stable region are presented. The increase of the angular velocity and flexible attachment length will weaken the attitude stability, and the change of the filled ratio of liquid fuel tank has a different influence on the stability of the coupled spacecraft, depending on the different conditions. The attitude stability analysis of the coupled spacecraft system in this context is useful for selecting appropriate parameters in the complex spacecraft design. |
---|---|
ISSN: | 0567-7718 1614-3116 |
DOI: | 10.1007/s10409-016-0616-9 |