Loading…
Electrospun Semiconductor‐Based Nano‐Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges
Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever‐growing challenges of both energy shortage and environmental pollution. Design and synthesis of nano‐heterostructure photocatalysts with controllable components and morphologies are the key fa...
Saved in:
Published in: | Energy & environmental materials (Hoboken, N.J.) N.J.), 2023-03, Vol.6 (2), p.4-n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3728-7b5ac94ffc058312e125d51318c938d44539042f838d9dfc910ff4d971c26ae63 |
---|---|
cites | cdi_FETCH-LOGICAL-c3728-7b5ac94ffc058312e125d51318c938d44539042f838d9dfc910ff4d971c26ae63 |
container_end_page | n/a |
container_issue | 2 |
container_start_page | 4 |
container_title | Energy & environmental materials (Hoboken, N.J.) |
container_volume | 6 |
creator | Lu, Na Zhang, Mingyi Jing, Xuedong Zhang, Peng Zhu, Yongan Zhang, Zhenyi |
description | Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever‐growing challenges of both energy shortage and environmental pollution. Design and synthesis of nano‐heterostructure photocatalysts with controllable components and morphologies are the key factors for achieving highly efficient photocatalytic processes. One‐dimensional (1D) semiconductor nanofibers produced by electrospinning possess a large ratio of length to diameter, high ratio of surface to volume, small grain sizes, and high porosity, which are ideally suited for photocatalytic reactions from the viewpoint of structure advantage. After the secondary treatment of these nanofibers through the solvothermal, gas reduction, in situ doping, or assembly methods, the multi‐component nanofibers with hierarchical nano‐heterostructures can be obtained to further enhance their light absorption and charge carrier separation during the photocatalytic processes. In recent years, the electrospun semiconductor‐based nano‐heterostructures have become a “hot topic” in the fields of photocatalytic energy conversion and environmental remediation. This review article summarizes the recent progress in electrospinning synthesis of various kinds of high‐performance semiconductor‐based nano‐heterostructure photocatalysts for H2 production, CO2 reduction, and decomposition of pollutants. The future perspectives of these materials are also discussed.
This review summarizes recent progress in the research area of electrospun semiconductor‐based nano‐heterostructures for the photocatalytic energy conversion and environment remediation. It also analyzes the structure advantages of electrospun semiconductor‐based nano‐heterostructure photocatalysts on the increase in the light‐harvesting ability, charge separation, and catalytic active site. The photocatalytic pollutant decomposition, H2 production, and CO2 reduction over electrospun semiconductor‐based nano‐heterostructure photocatalysts are reviewed, and future perspectives and challenges are discussed. |
doi_str_mv | 10.1002/eem2.12338 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_24P</sourceid><recordid>TN_cdi_wanfang_journals_nyyhjcl_e202302002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>nyyhjcl_e202302002</wanfj_id><sourcerecordid>nyyhjcl_e202302002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3728-7b5ac94ffc058312e125d51318c938d44539042f838d9dfc910ff4d971c26ae63</originalsourceid><addsrcrecordid>eNp9kUtOHDEQhi1EpKCBTU5giV2kAT_6mR2MmoAEAQFZW467PONRt92x3US94wisOR4nwcMgkRWbcpXrq7-k-hH6RskRJYQdA_TsiDLOqx20x_IynxOeF7v_5V_RQQhrkmBCeUbrPfTcdKCid2EYLb6D3ihn21FF518en05lgBb_ktal4hwiJC761B09BKydxzcrF52SUXZTNAo3FvxywgtnH8AH4yyWtk2_D8Y724NNHL6FHlojY-r-wNfD4HwcrYkmKW7gxUp2HdglhH30RcsuwMH7O0O_z5r7xfn88vrnxeLkcq54yap5-SeXqs60ViSvOGVAWd7mlNNK1bxqsyznNcmYrlJRt1rVlGidtXVJFSskFHyGvm91_0mrpV2KtRu9TRuFnabVWnUCGGE83SzFGTrcwoN3f0cI8YNmZVWUFSvq7ENSpYsFD1oM3vTST4ISsfFKbLwSb14lmL7vNx1Mn5Ciaa7YduYV3lSbFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2786782694</pqid></control><display><type>article</type><title>Electrospun Semiconductor‐Based Nano‐Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges</title><source>Wiley-Blackwell Titles (Open access)</source><creator>Lu, Na ; Zhang, Mingyi ; Jing, Xuedong ; Zhang, Peng ; Zhu, Yongan ; Zhang, Zhenyi</creator><creatorcontrib>Lu, Na ; Zhang, Mingyi ; Jing, Xuedong ; Zhang, Peng ; Zhu, Yongan ; Zhang, Zhenyi</creatorcontrib><description>Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever‐growing challenges of both energy shortage and environmental pollution. Design and synthesis of nano‐heterostructure photocatalysts with controllable components and morphologies are the key factors for achieving highly efficient photocatalytic processes. One‐dimensional (1D) semiconductor nanofibers produced by electrospinning possess a large ratio of length to diameter, high ratio of surface to volume, small grain sizes, and high porosity, which are ideally suited for photocatalytic reactions from the viewpoint of structure advantage. After the secondary treatment of these nanofibers through the solvothermal, gas reduction, in situ doping, or assembly methods, the multi‐component nanofibers with hierarchical nano‐heterostructures can be obtained to further enhance their light absorption and charge carrier separation during the photocatalytic processes. In recent years, the electrospun semiconductor‐based nano‐heterostructures have become a “hot topic” in the fields of photocatalytic energy conversion and environmental remediation. This review article summarizes the recent progress in electrospinning synthesis of various kinds of high‐performance semiconductor‐based nano‐heterostructure photocatalysts for H2 production, CO2 reduction, and decomposition of pollutants. The future perspectives of these materials are also discussed.
This review summarizes recent progress in the research area of electrospun semiconductor‐based nano‐heterostructures for the photocatalytic energy conversion and environment remediation. It also analyzes the structure advantages of electrospun semiconductor‐based nano‐heterostructure photocatalysts on the increase in the light‐harvesting ability, charge separation, and catalytic active site. The photocatalytic pollutant decomposition, H2 production, and CO2 reduction over electrospun semiconductor‐based nano‐heterostructure photocatalysts are reviewed, and future perspectives and challenges are discussed.</description><identifier>ISSN: 2575-0356</identifier><identifier>ISSN: 2575-0348</identifier><identifier>EISSN: 2575-0356</identifier><identifier>DOI: 10.1002/eem2.12338</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Carbon dioxide ; Controllability ; Current carriers ; Diameters ; Electromagnetic absorption ; Electrospinning ; electrospun nanofibers ; Energy conversion ; Energy harvesting ; Energy shortages ; Environmental cleanup ; environmental remediation ; Environmental restoration ; Grain size ; Heterostructures ; Hydrogen production ; Nanofibers ; Photocatalysis ; Photocatalysts ; Porosity ; Reduction ; Remediation ; semiconductor heterojunction ; Solar energy ; Synthesis</subject><ispartof>Energy & environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.4-n/a</ispartof><rights>2022 Zhengzhou University</rights><rights>2023 Zhengzhou University</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3728-7b5ac94ffc058312e125d51318c938d44539042f838d9dfc910ff4d971c26ae63</citedby><cites>FETCH-LOGICAL-c3728-7b5ac94ffc058312e125d51318c938d44539042f838d9dfc910ff4d971c26ae63</cites><orcidid>0000-0003-3606-8966</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/nyyhjcl-e/nyyhjcl-e.jpg</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Feem2.12338$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Feem2.12338$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11561,27923,27924,46051,46475</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1002%2Feem2.12338$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc></links><search><creatorcontrib>Lu, Na</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Jing, Xuedong</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhu, Yongan</creatorcontrib><creatorcontrib>Zhang, Zhenyi</creatorcontrib><title>Electrospun Semiconductor‐Based Nano‐Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges</title><title>Energy & environmental materials (Hoboken, N.J.)</title><description>Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever‐growing challenges of both energy shortage and environmental pollution. Design and synthesis of nano‐heterostructure photocatalysts with controllable components and morphologies are the key factors for achieving highly efficient photocatalytic processes. One‐dimensional (1D) semiconductor nanofibers produced by electrospinning possess a large ratio of length to diameter, high ratio of surface to volume, small grain sizes, and high porosity, which are ideally suited for photocatalytic reactions from the viewpoint of structure advantage. After the secondary treatment of these nanofibers through the solvothermal, gas reduction, in situ doping, or assembly methods, the multi‐component nanofibers with hierarchical nano‐heterostructures can be obtained to further enhance their light absorption and charge carrier separation during the photocatalytic processes. In recent years, the electrospun semiconductor‐based nano‐heterostructures have become a “hot topic” in the fields of photocatalytic energy conversion and environmental remediation. This review article summarizes the recent progress in electrospinning synthesis of various kinds of high‐performance semiconductor‐based nano‐heterostructure photocatalysts for H2 production, CO2 reduction, and decomposition of pollutants. The future perspectives of these materials are also discussed.
This review summarizes recent progress in the research area of electrospun semiconductor‐based nano‐heterostructures for the photocatalytic energy conversion and environment remediation. It also analyzes the structure advantages of electrospun semiconductor‐based nano‐heterostructure photocatalysts on the increase in the light‐harvesting ability, charge separation, and catalytic active site. The photocatalytic pollutant decomposition, H2 production, and CO2 reduction over electrospun semiconductor‐based nano‐heterostructure photocatalysts are reviewed, and future perspectives and challenges are discussed.</description><subject>Carbon dioxide</subject><subject>Controllability</subject><subject>Current carriers</subject><subject>Diameters</subject><subject>Electromagnetic absorption</subject><subject>Electrospinning</subject><subject>electrospun nanofibers</subject><subject>Energy conversion</subject><subject>Energy harvesting</subject><subject>Energy shortages</subject><subject>Environmental cleanup</subject><subject>environmental remediation</subject><subject>Environmental restoration</subject><subject>Grain size</subject><subject>Heterostructures</subject><subject>Hydrogen production</subject><subject>Nanofibers</subject><subject>Photocatalysis</subject><subject>Photocatalysts</subject><subject>Porosity</subject><subject>Reduction</subject><subject>Remediation</subject><subject>semiconductor heterojunction</subject><subject>Solar energy</subject><subject>Synthesis</subject><issn>2575-0356</issn><issn>2575-0348</issn><issn>2575-0356</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kUtOHDEQhi1EpKCBTU5giV2kAT_6mR2MmoAEAQFZW467PONRt92x3US94wisOR4nwcMgkRWbcpXrq7-k-hH6RskRJYQdA_TsiDLOqx20x_IynxOeF7v_5V_RQQhrkmBCeUbrPfTcdKCid2EYLb6D3ihn21FF518en05lgBb_ktal4hwiJC761B09BKydxzcrF52SUXZTNAo3FvxywgtnH8AH4yyWtk2_D8Y724NNHL6FHlojY-r-wNfD4HwcrYkmKW7gxUp2HdglhH30RcsuwMH7O0O_z5r7xfn88vrnxeLkcq54yap5-SeXqs60ViSvOGVAWd7mlNNK1bxqsyznNcmYrlJRt1rVlGidtXVJFSskFHyGvm91_0mrpV2KtRu9TRuFnabVWnUCGGE83SzFGTrcwoN3f0cI8YNmZVWUFSvq7ENSpYsFD1oM3vTST4ISsfFKbLwSb14lmL7vNx1Mn5Ciaa7YduYV3lSbFA</recordid><startdate>202303</startdate><enddate>202303</enddate><creator>Lu, Na</creator><creator>Zhang, Mingyi</creator><creator>Jing, Xuedong</creator><creator>Zhang, Peng</creator><creator>Zhu, Yongan</creator><creator>Zhang, Zhenyi</creator><general>Wiley Subscription Services, Inc</general><general>Key Laboratory of New Energy and Rare Earth Resource Utilization of State Ethnic Affairs Commission,Key Laboratory of Photosensitive Materials and Devices of Liaoning Province,School of Physics and Materials Engineering,Dalian Minzu University,Dalian 116600,China%Key Laboratory for Photonic and Electronic Bandgap Materials,Ministry of Education,School of Physics and Electronic Engineering,Harbin Normal University,Harbin 150025,China%School of Materials Science and Engineering,Zhengzhou University,Zhengzhou 45001,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>SOI</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0003-3606-8966</orcidid></search><sort><creationdate>202303</creationdate><title>Electrospun Semiconductor‐Based Nano‐Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges</title><author>Lu, Na ; Zhang, Mingyi ; Jing, Xuedong ; Zhang, Peng ; Zhu, Yongan ; Zhang, Zhenyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3728-7b5ac94ffc058312e125d51318c938d44539042f838d9dfc910ff4d971c26ae63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Carbon dioxide</topic><topic>Controllability</topic><topic>Current carriers</topic><topic>Diameters</topic><topic>Electromagnetic absorption</topic><topic>Electrospinning</topic><topic>electrospun nanofibers</topic><topic>Energy conversion</topic><topic>Energy harvesting</topic><topic>Energy shortages</topic><topic>Environmental cleanup</topic><topic>environmental remediation</topic><topic>Environmental restoration</topic><topic>Grain size</topic><topic>Heterostructures</topic><topic>Hydrogen production</topic><topic>Nanofibers</topic><topic>Photocatalysis</topic><topic>Photocatalysts</topic><topic>Porosity</topic><topic>Reduction</topic><topic>Remediation</topic><topic>semiconductor heterojunction</topic><topic>Solar energy</topic><topic>Synthesis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Na</creatorcontrib><creatorcontrib>Zhang, Mingyi</creatorcontrib><creatorcontrib>Jing, Xuedong</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Zhu, Yongan</creatorcontrib><creatorcontrib>Zhang, Zhenyi</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Environment Abstracts</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Na</au><au>Zhang, Mingyi</au><au>Jing, Xuedong</au><au>Zhang, Peng</au><au>Zhu, Yongan</au><au>Zhang, Zhenyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrospun Semiconductor‐Based Nano‐Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges</atitle><jtitle>Energy & environmental materials (Hoboken, N.J.)</jtitle><date>2023-03</date><risdate>2023</risdate><volume>6</volume><issue>2</issue><spage>4</spage><epage>n/a</epage><pages>4-n/a</pages><issn>2575-0356</issn><issn>2575-0348</issn><eissn>2575-0356</eissn><abstract>Harvesting solar energy to drive the semiconductor photocatalysis offers a promising tactic to address ever‐growing challenges of both energy shortage and environmental pollution. Design and synthesis of nano‐heterostructure photocatalysts with controllable components and morphologies are the key factors for achieving highly efficient photocatalytic processes. One‐dimensional (1D) semiconductor nanofibers produced by electrospinning possess a large ratio of length to diameter, high ratio of surface to volume, small grain sizes, and high porosity, which are ideally suited for photocatalytic reactions from the viewpoint of structure advantage. After the secondary treatment of these nanofibers through the solvothermal, gas reduction, in situ doping, or assembly methods, the multi‐component nanofibers with hierarchical nano‐heterostructures can be obtained to further enhance their light absorption and charge carrier separation during the photocatalytic processes. In recent years, the electrospun semiconductor‐based nano‐heterostructures have become a “hot topic” in the fields of photocatalytic energy conversion and environmental remediation. This review article summarizes the recent progress in electrospinning synthesis of various kinds of high‐performance semiconductor‐based nano‐heterostructure photocatalysts for H2 production, CO2 reduction, and decomposition of pollutants. The future perspectives of these materials are also discussed.
This review summarizes recent progress in the research area of electrospun semiconductor‐based nano‐heterostructures for the photocatalytic energy conversion and environment remediation. It also analyzes the structure advantages of electrospun semiconductor‐based nano‐heterostructure photocatalysts on the increase in the light‐harvesting ability, charge separation, and catalytic active site. The photocatalytic pollutant decomposition, H2 production, and CO2 reduction over electrospun semiconductor‐based nano‐heterostructure photocatalysts are reviewed, and future perspectives and challenges are discussed.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/eem2.12338</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-3606-8966</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2575-0356 |
ispartof | Energy & environmental materials (Hoboken, N.J.), 2023-03, Vol.6 (2), p.4-n/a |
issn | 2575-0356 2575-0348 2575-0356 |
language | eng |
recordid | cdi_wanfang_journals_nyyhjcl_e202302002 |
source | Wiley-Blackwell Titles (Open access) |
subjects | Carbon dioxide Controllability Current carriers Diameters Electromagnetic absorption Electrospinning electrospun nanofibers Energy conversion Energy harvesting Energy shortages Environmental cleanup environmental remediation Environmental restoration Grain size Heterostructures Hydrogen production Nanofibers Photocatalysis Photocatalysts Porosity Reduction Remediation semiconductor heterojunction Solar energy Synthesis |
title | Electrospun Semiconductor‐Based Nano‐Heterostructures for Photocatalytic Energy Conversion and Environmental Remediation: Opportunities and Challenges |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T01%3A34%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrospun%20Semiconductor%E2%80%90Based%20Nano%E2%80%90Heterostructures%20for%20Photocatalytic%20Energy%20Conversion%20and%20Environmental%20Remediation:%20Opportunities%20and%20Challenges&rft.jtitle=Energy%20&%20environmental%20materials%20(Hoboken,%20N.J.)&rft.au=Lu,%20Na&rft.date=2023-03&rft.volume=6&rft.issue=2&rft.spage=4&rft.epage=n/a&rft.pages=4-n/a&rft.issn=2575-0356&rft.eissn=2575-0356&rft_id=info:doi/10.1002/eem2.12338&rft_dat=%3Cwanfang_jour_24P%3Enyyhjcl_e202302002%3C/wanfang_jour_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3728-7b5ac94ffc058312e125d51318c938d44539042f838d9dfc910ff4d971c26ae63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2786782694&rft_id=info:pmid/&rft_wanfj_id=nyyhjcl_e202302002&rfr_iscdi=true |