Loading…

MATLAB-Based Simulation of Buoyancy-Driven Underwater Glider Motion

The mass configuration of the buoyancy-driven underwater glider is decomposed and defined. The coupling between the glider body and its internal masses is addressed using the energy law. A glider motion model is established, and the corresponding simulation program is derived using MATLAB. The chara...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Ocean University of China 2008-02, Vol.7 (1), p.113-118
Main Authors: Kan, Lei, Zhang, Yuwen, Fan, Hui, Yang, Wugang, Chen, Zhikun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mass configuration of the buoyancy-driven underwater glider is decomposed and defined. The coupling between the glider body and its internal masses is addressed using the energy law. A glider motion model is established, and the corresponding simulation program is derived using MATLAB. The characteristics of the glider motion are explored using this program. The simulation results show that the basic characteristic of a buoyancy-driven underwater glider is the periodic alternation of downward and upward motions. The glider's spiral motion can be applied to missions in restricted regions. The glider's horizontal velocity, gliding depth and its motion radius in spiral motion can be changed to meet different application purposes by using different glider parameter designs. The simulation also shows that the model is appropriate and the program has strong simulation functions.
ISSN:1672-5182
1993-5021
1672-5174
DOI:10.1007/s11802-008-0113-2