Loading…
Seasonal dynamics of turbidity maximum in the Muthupet estuary, India
Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter (SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditions. Freshwater flow was available during post-monsoon and monsoon. An up-estuary s...
Saved in:
Published in: | Journal of Ocean University of China 2015-10, Vol.14 (5), p.765-777 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Results are presented of the longitudinal and vertical profiling of salinity and suspended particulate matter (SPM) at the Muthupet estuary, India, during a one year period under widely varying freshwater flow conditions. Freshwater flow was available during post-monsoon and monsoon. An up-estuary shift in the location of estuarine turbidity maxima (ETM) was observed during the transition from post-monsoon to pre-monsoon and further it shifted downstream during the transition from pre-monsoon to monsoon, thereby exhibiting a pronounced seasonal cycle. The salinity intrusion was dependent on the freshwater discharge and was expressed as a power function of freshwater flow, explaining 97% of the variance. The formation of a salt plug in Muthupet estuary and its seasonal dynamics were observed, which is not an identified feature of any of the Indian estuaries studied so far. The geographical positions of salt plug and ETM core were more or less the same during their formation. The occurrence of two ETM during the LW of post-monsoon and the absence of ETM during monsoon explains the strong seasonal variation in the formation of ETM. The primary factor affecting the formation of ETM was identified as the freshwater flow over an annual cycle; the resuspension of sediments by tidal current affecting the formation on a flood/ebb cycle was secondary. The extent of shift of ETM was found to be an inverse logarithmic function of the freshwater discharge. The separation between ETM intrusion and salinity intrusion increased two fold with the increase in ETM intrusion. |
---|---|
ISSN: | 1672-5182 1993-5021 1672-5174 |
DOI: | 10.1007/s11802-015-2510-7 |