Loading…
Safety Verification of Semi-Algebraic Dynamical Systems via Inductive Invariant
To verify the safety of nonlinear dynamical systems based on inductive invariants, key issues include defining the most complete inductive condition and discovering an inductive invariant that satisfies the specified inductive condition. In this paper, to lay a solid foundation for future research i...
Saved in:
Published in: | Tsinghua science and technology 2014-04, Vol.19 (2), p.211-222 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c345t-56444c82a07fe331fca476694e0d08b29dd6ea1cb9dd91bc7833491bfa3b54c33 |
---|---|
cites | |
container_end_page | 222 |
container_issue | 2 |
container_start_page | 211 |
container_title | Tsinghua science and technology |
container_volume | 19 |
creator | Kong, Hui He, Fei Song, Xiaoyu Gu, Ming Tan, Hongyan Sun, Jiaguang |
description | To verify the safety of nonlinear dynamical systems based on inductive invariants, key issues include defining the most complete inductive condition and discovering an inductive invariant that satisfies the specified inductive condition. In this paper, to lay a solid foundation for future research into the safety verification of semi- algebraic dynamical systems, we first establish a formal framework for evaluating the quality of continuous inductive conditions. In addition, we propose a new complete and computable inductive condition for verifying the safety of semi-algebraic dynamical systems. Compared with the existing complete and computable inductive condition, this new inductive condition can be easily adapted to achieve a set of sufficient inductive conditions with different level of conservativeness and computational complexity, which provides us with a means to trade off between the verification power and complexity. These inductive conditions can be solved by quantifier elimination and SMT solvers. |
doi_str_mv | 10.1109/TST.2014.6787375 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_qhdxxb_e201402012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>49435176</cqvip_id><wanfj_id>qhdxxb_e201402012</wanfj_id><sourcerecordid>qhdxxb_e201402012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-56444c82a07fe331fca476694e0d08b29dd6ea1cb9dd91bc7833491bfa3b54c33</originalsourceid><addsrcrecordid>eNo1kL1vwjAQxa2qlUpp947p2CHUjh07GRH9QkJiSNrVujg2GBGnOIGS_75G0OXuJ91796SH0CPBE0Jw_lIW5STBhE24yAQV6RUakUxkseCYXwfGWMQ4IewW3XXdBmPKU0FHaFmA0f0QfWtvjVXQ29ZFrYkK3dh4ul3pyoNV0evgoAnnbVQMXa-bLjpYiOau3qveHnSgA3gLrr9HNwa2nX647DH6en8rZ5_xYvkxn00XsaIs7eOUM8ZUlgAWRlNKjAImOM-ZxjXOqiSva66BqCpATiolMkpZAAO0SpmidIyez39_wRlwK7lp996FRLlb18djJfWpDBxGErT4rFW-7TqvjfzxtgE_SILlqTwZypMnvbyUFyxPF8u6daudDQH_HpYzmhLB6R9X1W2t</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Safety Verification of Semi-Algebraic Dynamical Systems via Inductive Invariant</title><source>IEEE Xplore All Journals</source><creator>Kong, Hui ; He, Fei ; Song, Xiaoyu ; Gu, Ming ; Tan, Hongyan ; Sun, Jiaguang</creator><creatorcontrib>Kong, Hui ; He, Fei ; Song, Xiaoyu ; Gu, Ming ; Tan, Hongyan ; Sun, Jiaguang</creatorcontrib><description>To verify the safety of nonlinear dynamical systems based on inductive invariants, key issues include defining the most complete inductive condition and discovering an inductive invariant that satisfies the specified inductive condition. In this paper, to lay a solid foundation for future research into the safety verification of semi- algebraic dynamical systems, we first establish a formal framework for evaluating the quality of continuous inductive conditions. In addition, we propose a new complete and computable inductive condition for verifying the safety of semi-algebraic dynamical systems. Compared with the existing complete and computable inductive condition, this new inductive condition can be easily adapted to achieve a set of sufficient inductive conditions with different level of conservativeness and computational complexity, which provides us with a means to trade off between the verification power and complexity. These inductive conditions can be solved by quantifier elimination and SMT solvers.</description><identifier>ISSN: 1007-0214</identifier><identifier>EISSN: 1878-7606</identifier><identifier>EISSN: 1007-0214</identifier><identifier>DOI: 10.1109/TST.2014.6787375</identifier><language>eng</language><publisher>School of Software, Tsinghua University, Beijing 100084,China%Department of ECE, Portland State University, OR 97207, USA%Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China</publisher><subject>半代数 ; 安全性 ; 安全验证 ; 感应 ; 计算复杂性 ; 诱导条件 ; 量词消去 ; 非线性动力系统</subject><ispartof>Tsinghua science and technology, 2014-04, Vol.19 (2), p.211-222</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-56444c82a07fe331fca476694e0d08b29dd6ea1cb9dd91bc7833491bfa3b54c33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85782X/85782X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kong, Hui</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Song, Xiaoyu</creatorcontrib><creatorcontrib>Gu, Ming</creatorcontrib><creatorcontrib>Tan, Hongyan</creatorcontrib><creatorcontrib>Sun, Jiaguang</creatorcontrib><title>Safety Verification of Semi-Algebraic Dynamical Systems via Inductive Invariant</title><title>Tsinghua science and technology</title><addtitle>Tsinghua Science and Technology</addtitle><description>To verify the safety of nonlinear dynamical systems based on inductive invariants, key issues include defining the most complete inductive condition and discovering an inductive invariant that satisfies the specified inductive condition. In this paper, to lay a solid foundation for future research into the safety verification of semi- algebraic dynamical systems, we first establish a formal framework for evaluating the quality of continuous inductive conditions. In addition, we propose a new complete and computable inductive condition for verifying the safety of semi-algebraic dynamical systems. Compared with the existing complete and computable inductive condition, this new inductive condition can be easily adapted to achieve a set of sufficient inductive conditions with different level of conservativeness and computational complexity, which provides us with a means to trade off between the verification power and complexity. These inductive conditions can be solved by quantifier elimination and SMT solvers.</description><subject>半代数</subject><subject>安全性</subject><subject>安全验证</subject><subject>感应</subject><subject>计算复杂性</subject><subject>诱导条件</subject><subject>量词消去</subject><subject>非线性动力系统</subject><issn>1007-0214</issn><issn>1878-7606</issn><issn>1007-0214</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kL1vwjAQxa2qlUpp947p2CHUjh07GRH9QkJiSNrVujg2GBGnOIGS_75G0OXuJ91796SH0CPBE0Jw_lIW5STBhE24yAQV6RUakUxkseCYXwfGWMQ4IewW3XXdBmPKU0FHaFmA0f0QfWtvjVXQ29ZFrYkK3dh4ul3pyoNV0evgoAnnbVQMXa-bLjpYiOau3qveHnSgA3gLrr9HNwa2nX647DH6en8rZ5_xYvkxn00XsaIs7eOUM8ZUlgAWRlNKjAImOM-ZxjXOqiSva66BqCpATiolMkpZAAO0SpmidIyez39_wRlwK7lp996FRLlb18djJfWpDBxGErT4rFW-7TqvjfzxtgE_SILlqTwZypMnvbyUFyxPF8u6daudDQH_HpYzmhLB6R9X1W2t</recordid><startdate>20140401</startdate><enddate>20140401</enddate><creator>Kong, Hui</creator><creator>He, Fei</creator><creator>Song, Xiaoyu</creator><creator>Gu, Ming</creator><creator>Tan, Hongyan</creator><creator>Sun, Jiaguang</creator><general>School of Software, Tsinghua University, Beijing 100084,China%Department of ECE, Portland State University, OR 97207, USA%Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20140401</creationdate><title>Safety Verification of Semi-Algebraic Dynamical Systems via Inductive Invariant</title><author>Kong, Hui ; He, Fei ; Song, Xiaoyu ; Gu, Ming ; Tan, Hongyan ; Sun, Jiaguang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-56444c82a07fe331fca476694e0d08b29dd6ea1cb9dd91bc7833491bfa3b54c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>半代数</topic><topic>安全性</topic><topic>安全验证</topic><topic>感应</topic><topic>计算复杂性</topic><topic>诱导条件</topic><topic>量词消去</topic><topic>非线性动力系统</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Hui</creatorcontrib><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Song, Xiaoyu</creatorcontrib><creatorcontrib>Gu, Ming</creatorcontrib><creatorcontrib>Tan, Hongyan</creatorcontrib><creatorcontrib>Sun, Jiaguang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Tsinghua science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Hui</au><au>He, Fei</au><au>Song, Xiaoyu</au><au>Gu, Ming</au><au>Tan, Hongyan</au><au>Sun, Jiaguang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Safety Verification of Semi-Algebraic Dynamical Systems via Inductive Invariant</atitle><jtitle>Tsinghua science and technology</jtitle><addtitle>Tsinghua Science and Technology</addtitle><date>2014-04-01</date><risdate>2014</risdate><volume>19</volume><issue>2</issue><spage>211</spage><epage>222</epage><pages>211-222</pages><issn>1007-0214</issn><eissn>1878-7606</eissn><eissn>1007-0214</eissn><abstract>To verify the safety of nonlinear dynamical systems based on inductive invariants, key issues include defining the most complete inductive condition and discovering an inductive invariant that satisfies the specified inductive condition. In this paper, to lay a solid foundation for future research into the safety verification of semi- algebraic dynamical systems, we first establish a formal framework for evaluating the quality of continuous inductive conditions. In addition, we propose a new complete and computable inductive condition for verifying the safety of semi-algebraic dynamical systems. Compared with the existing complete and computable inductive condition, this new inductive condition can be easily adapted to achieve a set of sufficient inductive conditions with different level of conservativeness and computational complexity, which provides us with a means to trade off between the verification power and complexity. These inductive conditions can be solved by quantifier elimination and SMT solvers.</abstract><pub>School of Software, Tsinghua University, Beijing 100084,China%Department of ECE, Portland State University, OR 97207, USA%Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China</pub><doi>10.1109/TST.2014.6787375</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1007-0214 |
ispartof | Tsinghua science and technology, 2014-04, Vol.19 (2), p.211-222 |
issn | 1007-0214 1878-7606 1007-0214 |
language | eng |
recordid | cdi_wanfang_journals_qhdxxb_e201402012 |
source | IEEE Xplore All Journals |
subjects | 半代数 安全性 安全验证 感应 计算复杂性 诱导条件 量词消去 非线性动力系统 |
title | Safety Verification of Semi-Algebraic Dynamical Systems via Inductive Invariant |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A28%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Safety%20Verification%20of%20Semi-Algebraic%20Dynamical%20Systems%20via%20Inductive%20Invariant&rft.jtitle=Tsinghua%20science%20and%20technology&rft.au=Kong,%20Hui&rft.date=2014-04-01&rft.volume=19&rft.issue=2&rft.spage=211&rft.epage=222&rft.pages=211-222&rft.issn=1007-0214&rft.eissn=1878-7606&rft_id=info:doi/10.1109/TST.2014.6787375&rft_dat=%3Cwanfang_jour_cross%3Eqhdxxb_e201402012%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c345t-56444c82a07fe331fca476694e0d08b29dd6ea1cb9dd91bc7833491bfa3b54c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=49435176&rft_wanfj_id=qhdxxb_e201402012&rfr_iscdi=true |