Loading…
Assimilation of Doppler radar observations with an ensemble square root filter: A squall line case study
The effectiveness of using an Ensemble Square Root Filter (EnSRF) to assimilate real Doppler radar observations on convective scale is investigated by applying the technique to a case of squall line on 12 July 2005 in midwest Shandong Province using the Weather Research and Forecasting (WRF) model....
Saved in:
Published in: | Journal of Meteorological Research 2014-02, Vol.28 (2), p.230-251 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effectiveness of using an Ensemble Square Root Filter (EnSRF) to assimilate real Doppler radar observations on convective scale is investigated by applying the technique to a case of squall line on 12 July 2005 in midwest Shandong Province using the Weather Research and Forecasting (WRF) model. The experimental results show that: (1) The EnSRF system has the potential to initiate a squall line accurately by assimilation of real Doppler radar data. The convective-scale information has been added into the WRF model through radar data assimilation and thus the analyzed fields are improved noticeably. The model spin-up time has been shortened, and the precipitation forecast is improved accordingly. (2) Compared with the control run, the deterministic forecast initiated with the ensemble mean analysis of EnSRF produces more accurate prediction of microphysical fields. The predicted wind and thermal fields are reasonable and in accordance with the characteristics of convective storms. (3) The propagation direction of the squall line from the ensemble mean analysis is consistent with that of the observation, but the propagation speed is larger than the observed. The effective forecast period for this squall line is about 5–6 h, probably because of the nonlinear development of the convective storm. |
---|---|
ISSN: | 2095-6037 2198-0934 |
DOI: | 10.1007/s13351-014-2046-6 |