Loading…
Large-eddy simulation of the flow past both finite and infinite circular cylinders at Re=3900
The flow past a finite circular cylinder with a height-to-diameter ratio of 1.5 and an infinite circular cylinder of the same diameter at a Reynolds number Re= 3 900 is investigated using the large eddy simulation(LES). The objective of the present study is to explore the differences of the flow mec...
Saved in:
Published in: | Journal of hydrodynamics. Series B 2015-04, Vol.27 (2), p.195-203 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The flow past a finite circular cylinder with a height-to-diameter ratio of 1.5 and an infinite circular cylinder of the same diameter at a Reynolds number Re= 3 900 is investigated using the large eddy simulation(LES). The objective of the present study is to explore the differences of the flow mechanisms between the finite and infinite circular cylinders. It is shown that the free end of the finite circular cylinders affects the wake region significantly. The mean drag coefficient and the fluctuating lift coefficient of the finite circular cylinder are smaller than those of the infinite circular cylinder. The three-dimensional separation and the separated shear layer instability of the finite circular cylinder can obviously be observed. The existence of an arch vortex in the average flow downstream of the free end is demonstrated. |
---|---|
ISSN: | 1001-6058 1878-0342 |
DOI: | 10.1016/S1001-6058(15)60472-3 |