Loading…

Homotopy-based analytical approximation to nonlinear short-crested waves in a fluid of finite depth

A nonlinear short-crested wave system, consisting of two progressive waves propagating at an oblique angle to each other in a fluid of finite depth, is investigated by means of an analytical approach named the homotopy analysis method (HAM). Highly convergent series solutions are explicitly derived...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrodynamics. Series B 2015-06, Vol.27 (3), p.321-331
Main Author: 王苹 卢东强
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A nonlinear short-crested wave system, consisting of two progressive waves propagating at an oblique angle to each other in a fluid of finite depth, is investigated by means of an analytical approach named the homotopy analysis method (HAM). Highly convergent series solutions are explicitly derived for the velocity potential and the surface wave elevation. We find that, at every value of water depth, there is little difference between the kinetic energy and the potential energy for nonlinear waves. The nonlinear short-crested waves with a larger angle of incidence always contain the more potential wave energy. With the aid of the HAM, we obtain the dispersion relation for nonlinear short-crested waves. Furthermore, it is shown that the wave elevation tends to be smoothened at the crest and be sharpened at the trough as the water depth increases, and the wave pressure crests and troughs become steeper with increasing incident wave steepness.
ISSN:1001-6058
1878-0342
DOI:10.1016/S1001-6058(15)60489-9