Loading…
An extended form of Boussinesq-type equations for nonlinear water waves
An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussine...
Saved in:
Published in: | Journal of hydrodynamics. Series B 2015-10, Vol.27 (5), p.696-707 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333 |
container_end_page | 707 |
container_issue | 5 |
container_start_page | 696 |
container_title | Journal of hydrodynamics. Series B |
container_volume | 27 |
creator | 荆海晓 刘长根 陶建华 |
description | An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation. |
doi_str_mv | 10.1016/S1001-6058(15)60532-7 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sdlxyjyjz_e201505007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666876938</cqvip_id><wanfj_id>sdlxyjyjz_e201505007</wanfj_id><els_id>S1001605815605327</els_id><sourcerecordid>sdlxyjyjz_e201505007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqXwCEgRJ5AIrJ3YcU6oVFCQKnEAzlbqbEqq1m7t9Cc8PU5b4NjL7lr-Zmc1QXBJ4I4A4ffvBIBEHJi4JuzG95hG6VHQISIVEcQJPfbzL3IanDk3AYh5BkknGPR0iJsadYFFWBo7C00ZPpqlc5VGt4jqZo4hLpZ5XRntWiLURk_9Z27DdV5jW1fozoOTMp86vNj3bvD5_PTRf4mGb4PXfm8YqYRCHQlASHmpiFC0TNIc0_YpqEBQGUdCRlk2yogSdJQkWYqUoeJAKONUsSyO425wu9u7znWZ67GcmKXV3lG6YrppJs3kWyIFwoABpB5nO1xZ45zFUs5tNcttIwnINjy5DU-2yUjC5DY82er4Tuc8r8do_30OCR92QvQhrCovdKpCrbCoLKpaFqY6uOFqf_KX0eOFd_-7mXMuUp7FIv4BbLKR9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An extended form of Boussinesq-type equations for nonlinear water waves</title><source>ScienceDirect Freedom Collection</source><creator>荆海晓 刘长根 陶建华</creator><creatorcontrib>荆海晓 刘长根 陶建华</creatorcontrib><description>An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation.</description><identifier>ISSN: 1001-6058</identifier><identifier>EISSN: 1878-0342</identifier><identifier>DOI: 10.1016/S1001-6058(15)60532-7</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Boussinesq-type equations ; Engineering ; Engineering Fluid Dynamics ; harmonic generation ; Hydrology/Water Resources ; nonlinearity ; Numerical and Computational Physics ; Simulation ; Stokes-type analysis ; 广义方法 ; 扩展形式 ; 沿海地区 ; 波的传播 ; 非线性Boussinesq方程 ; 非线性水波 ; 非线性特性 ; 高阶导数</subject><ispartof>Journal of hydrodynamics. Series B, 2015-10, Vol.27 (5), p.696-707</ispartof><rights>2015 Publishing House for Journal of Hydrodynamics</rights><rights>China Ship Scientific Research Center 2015</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333</citedby><cites>FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86648X/86648X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>荆海晓 刘长根 陶建华</creatorcontrib><title>An extended form of Boussinesq-type equations for nonlinear water waves</title><title>Journal of hydrodynamics. Series B</title><addtitle>J Hydrodyn</addtitle><addtitle>Journal of Hydrodynamics</addtitle><description>An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation.</description><subject>Boussinesq-type equations</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>harmonic generation</subject><subject>Hydrology/Water Resources</subject><subject>nonlinearity</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Stokes-type analysis</subject><subject>广义方法</subject><subject>扩展形式</subject><subject>沿海地区</subject><subject>波的传播</subject><subject>非线性Boussinesq方程</subject><subject>非线性水波</subject><subject>非线性特性</subject><subject>高阶导数</subject><issn>1001-6058</issn><issn>1878-0342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqXwCEgRJ5AIrJ3YcU6oVFCQKnEAzlbqbEqq1m7t9Cc8PU5b4NjL7lr-Zmc1QXBJ4I4A4ffvBIBEHJi4JuzG95hG6VHQISIVEcQJPfbzL3IanDk3AYh5BkknGPR0iJsadYFFWBo7C00ZPpqlc5VGt4jqZo4hLpZ5XRntWiLURk_9Z27DdV5jW1fozoOTMp86vNj3bvD5_PTRf4mGb4PXfm8YqYRCHQlASHmpiFC0TNIc0_YpqEBQGUdCRlk2yogSdJQkWYqUoeJAKONUsSyO425wu9u7znWZ67GcmKXV3lG6YrppJs3kWyIFwoABpB5nO1xZ45zFUs5tNcttIwnINjy5DU-2yUjC5DY82er4Tuc8r8do_30OCR92QvQhrCovdKpCrbCoLKpaFqY6uOFqf_KX0eOFd_-7mXMuUp7FIv4BbLKR9w</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>荆海晓 刘长根 陶建华</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><general>Department of Mechanics, Tianjin University, Tianjin 300350, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20151001</creationdate><title>An extended form of Boussinesq-type equations for nonlinear water waves</title><author>荆海晓 刘长根 陶建华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boussinesq-type equations</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>harmonic generation</topic><topic>Hydrology/Water Resources</topic><topic>nonlinearity</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Stokes-type analysis</topic><topic>广义方法</topic><topic>扩展形式</topic><topic>沿海地区</topic><topic>波的传播</topic><topic>非线性Boussinesq方程</topic><topic>非线性水波</topic><topic>非线性特性</topic><topic>高阶导数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>荆海晓 刘长根 陶建华</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of hydrodynamics. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>荆海晓 刘长根 陶建华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended form of Boussinesq-type equations for nonlinear water waves</atitle><jtitle>Journal of hydrodynamics. Series B</jtitle><stitle>J Hydrodyn</stitle><addtitle>Journal of Hydrodynamics</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>27</volume><issue>5</issue><spage>696</spage><epage>707</epage><pages>696-707</pages><issn>1001-6058</issn><eissn>1878-0342</eissn><abstract>An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1001-6058(15)60532-7</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-6058 |
ispartof | Journal of hydrodynamics. Series B, 2015-10, Vol.27 (5), p.696-707 |
issn | 1001-6058 1878-0342 |
language | eng |
recordid | cdi_wanfang_journals_sdlxyjyjz_e201505007 |
source | ScienceDirect Freedom Collection |
subjects | Boussinesq-type equations Engineering Engineering Fluid Dynamics harmonic generation Hydrology/Water Resources nonlinearity Numerical and Computational Physics Simulation Stokes-type analysis 广义方法 扩展形式 沿海地区 波的传播 非线性Boussinesq方程 非线性水波 非线性特性 高阶导数 |
title | An extended form of Boussinesq-type equations for nonlinear water waves |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20form%20of%20Boussinesq-type%20equations%20for%20nonlinear%20water%20waves&rft.jtitle=Journal%20of%20hydrodynamics.%20Series%20B&rft.au=%E8%8D%86%E6%B5%B7%E6%99%93%20%E5%88%98%E9%95%BF%E6%A0%B9%20%E9%99%B6%E5%BB%BA%E5%8D%8E&rft.date=2015-10-01&rft.volume=27&rft.issue=5&rft.spage=696&rft.epage=707&rft.pages=696-707&rft.issn=1001-6058&rft.eissn=1878-0342&rft_id=info:doi/10.1016/S1001-6058(15)60532-7&rft_dat=%3Cwanfang_jour_cross%3Esdlxyjyjz_e201505007%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=666876938&rft_wanfj_id=sdlxyjyjz_e201505007&rfr_iscdi=true |