Loading…

An extended form of Boussinesq-type equations for nonlinear water waves

An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussine...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrodynamics. Series B 2015-10, Vol.27 (5), p.696-707
Main Author: 荆海晓 刘长根 陶建华
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333
cites cdi_FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333
container_end_page 707
container_issue 5
container_start_page 696
container_title Journal of hydrodynamics. Series B
container_volume 27
creator 荆海晓 刘长根 陶建华
description An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation.
doi_str_mv 10.1016/S1001-6058(15)60532-7
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sdlxyjyjz_e201505007</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666876938</cqvip_id><wanfj_id>sdlxyjyjz_e201505007</wanfj_id><els_id>S1001605815605327</els_id><sourcerecordid>sdlxyjyjz_e201505007</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333</originalsourceid><addsrcrecordid>eNqFkM1OwzAQhCMEEqXwCEgRJ5AIrJ3YcU6oVFCQKnEAzlbqbEqq1m7t9Cc8PU5b4NjL7lr-Zmc1QXBJ4I4A4ffvBIBEHJi4JuzG95hG6VHQISIVEcQJPfbzL3IanDk3AYh5BkknGPR0iJsadYFFWBo7C00ZPpqlc5VGt4jqZo4hLpZ5XRntWiLURk_9Z27DdV5jW1fozoOTMp86vNj3bvD5_PTRf4mGb4PXfm8YqYRCHQlASHmpiFC0TNIc0_YpqEBQGUdCRlk2yogSdJQkWYqUoeJAKONUsSyO425wu9u7znWZ67GcmKXV3lG6YrppJs3kWyIFwoABpB5nO1xZ45zFUs5tNcttIwnINjy5DU-2yUjC5DY82er4Tuc8r8do_30OCR92QvQhrCovdKpCrbCoLKpaFqY6uOFqf_KX0eOFd_-7mXMuUp7FIv4BbLKR9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An extended form of Boussinesq-type equations for nonlinear water waves</title><source>ScienceDirect Freedom Collection</source><creator>荆海晓 刘长根 陶建华</creator><creatorcontrib>荆海晓 刘长根 陶建华</creatorcontrib><description>An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation.</description><identifier>ISSN: 1001-6058</identifier><identifier>EISSN: 1878-0342</identifier><identifier>DOI: 10.1016/S1001-6058(15)60532-7</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>Boussinesq-type equations ; Engineering ; Engineering Fluid Dynamics ; harmonic generation ; Hydrology/Water Resources ; nonlinearity ; Numerical and Computational Physics ; Simulation ; Stokes-type analysis ; 广义方法 ; 扩展形式 ; 沿海地区 ; 波的传播 ; 非线性Boussinesq方程 ; 非线性水波 ; 非线性特性 ; 高阶导数</subject><ispartof>Journal of hydrodynamics. Series B, 2015-10, Vol.27 (5), p.696-707</ispartof><rights>2015 Publishing House for Journal of Hydrodynamics</rights><rights>China Ship Scientific Research Center 2015</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333</citedby><cites>FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86648X/86648X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>荆海晓 刘长根 陶建华</creatorcontrib><title>An extended form of Boussinesq-type equations for nonlinear water waves</title><title>Journal of hydrodynamics. Series B</title><addtitle>J Hydrodyn</addtitle><addtitle>Journal of Hydrodynamics</addtitle><description>An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation.</description><subject>Boussinesq-type equations</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>harmonic generation</subject><subject>Hydrology/Water Resources</subject><subject>nonlinearity</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>Stokes-type analysis</subject><subject>广义方法</subject><subject>扩展形式</subject><subject>沿海地区</subject><subject>波的传播</subject><subject>非线性Boussinesq方程</subject><subject>非线性水波</subject><subject>非线性特性</subject><subject>高阶导数</subject><issn>1001-6058</issn><issn>1878-0342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM1OwzAQhCMEEqXwCEgRJ5AIrJ3YcU6oVFCQKnEAzlbqbEqq1m7t9Cc8PU5b4NjL7lr-Zmc1QXBJ4I4A4ffvBIBEHJi4JuzG95hG6VHQISIVEcQJPfbzL3IanDk3AYh5BkknGPR0iJsadYFFWBo7C00ZPpqlc5VGt4jqZo4hLpZ5XRntWiLURk_9Z27DdV5jW1fozoOTMp86vNj3bvD5_PTRf4mGb4PXfm8YqYRCHQlASHmpiFC0TNIc0_YpqEBQGUdCRlk2yogSdJQkWYqUoeJAKONUsSyO425wu9u7znWZ67GcmKXV3lG6YrppJs3kWyIFwoABpB5nO1xZ45zFUs5tNcttIwnINjy5DU-2yUjC5DY82er4Tuc8r8do_30OCR92QvQhrCovdKpCrbCoLKpaFqY6uOFqf_KX0eOFd_-7mXMuUp7FIv4BbLKR9w</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>荆海晓 刘长根 陶建华</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><general>Department of Mechanics, Tianjin University, Tianjin 300350, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20151001</creationdate><title>An extended form of Boussinesq-type equations for nonlinear water waves</title><author>荆海晓 刘长根 陶建华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boussinesq-type equations</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>harmonic generation</topic><topic>Hydrology/Water Resources</topic><topic>nonlinearity</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>Stokes-type analysis</topic><topic>广义方法</topic><topic>扩展形式</topic><topic>沿海地区</topic><topic>波的传播</topic><topic>非线性Boussinesq方程</topic><topic>非线性水波</topic><topic>非线性特性</topic><topic>高阶导数</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>荆海晓 刘长根 陶建华</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of hydrodynamics. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>荆海晓 刘长根 陶建华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended form of Boussinesq-type equations for nonlinear water waves</atitle><jtitle>Journal of hydrodynamics. Series B</jtitle><stitle>J Hydrodyn</stitle><addtitle>Journal of Hydrodynamics</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>27</volume><issue>5</issue><spage>696</spage><epage>707</epage><pages>696-707</pages><issn>1001-6058</issn><eissn>1878-0342</eissn><abstract>An extended form of Boussinesq-type equations with improved nonlinearity is presented for the water wave propagation and transformation in coastal areas. To improve the nonlinearity of lower order Boussinesq-type equations,without including higher order derivative terms, an extended form of Boussinesq-type equations is derived by a generalized method. The Stokes-type analysis of the extended equations shows that the accuracy of the second order and third order nonlinear characteristics is improved greatly. The numerical test is also carried out to investigate the practical performance of the new equations under different wave conditions. Better agreement with experimental data is found in the regions of strong nonlinear wave-wave interaction and harmonic generation.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1001-6058(15)60532-7</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-6058
ispartof Journal of hydrodynamics. Series B, 2015-10, Vol.27 (5), p.696-707
issn 1001-6058
1878-0342
language eng
recordid cdi_wanfang_journals_sdlxyjyjz_e201505007
source ScienceDirect Freedom Collection
subjects Boussinesq-type equations
Engineering
Engineering Fluid Dynamics
harmonic generation
Hydrology/Water Resources
nonlinearity
Numerical and Computational Physics
Simulation
Stokes-type analysis
广义方法
扩展形式
沿海地区
波的传播
非线性Boussinesq方程
非线性水波
非线性特性
高阶导数
title An extended form of Boussinesq-type equations for nonlinear water waves
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T12%3A33%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20form%20of%20Boussinesq-type%20equations%20for%20nonlinear%20water%20waves&rft.jtitle=Journal%20of%20hydrodynamics.%20Series%20B&rft.au=%E8%8D%86%E6%B5%B7%E6%99%93%20%E5%88%98%E9%95%BF%E6%A0%B9%20%E9%99%B6%E5%BB%BA%E5%8D%8E&rft.date=2015-10-01&rft.volume=27&rft.issue=5&rft.spage=696&rft.epage=707&rft.pages=696-707&rft.issn=1001-6058&rft.eissn=1878-0342&rft_id=info:doi/10.1016/S1001-6058(15)60532-7&rft_dat=%3Cwanfang_jour_cross%3Esdlxyjyjz_e201505007%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-80e076fc18c2f47ae7076f828e0c96e11b99b91c82b4497e25ec6012562c59333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=666876938&rft_wanfj_id=sdlxyjyjz_e201505007&rfr_iscdi=true