Loading…
Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model
The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that...
Saved in:
Published in: | Journal of hydrodynamics. Series B 2015-10, Vol.27 (5), p.795-808 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3 |
container_end_page | 808 |
container_issue | 5 |
container_start_page | 795 |
container_title | Journal of hydrodynamics. Series B |
container_volume | 27 |
creator | 张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart) |
description | The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow. |
doi_str_mv | 10.1016/S1001-6058(15)60541-8 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sdlxyjyjz_e201505016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666876947</cqvip_id><wanfj_id>sdlxyjyjz_e201505016</wanfj_id><els_id>S1001605815605418</els_id><sourcerecordid>sdlxyjyjz_e201505016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3</originalsourceid><addsrcrecordid>eNqFUMFu1DAUjFCRaAufgGT1VKQG_BLbcU4IVS0gVXAAzpbXft71Kmu3drKQfj3epoVjT89PM_NmPFX1Fuh7oCA-_ABKoRaUy3Pg78pkUMsX1THITta0Zc1ReT9RXlUnOW8pbUVP2XF1_23aYfJGD0QHPczZZxIdGTdIppBH1HYmK9zovY_pAJghTpaYso969DEQneIULNFkM9sUXfQDWemMlhywQPzuNsV9WZ0fRkz1gu2ixeF19dLpIeObx3la_bq--nn5pb75_vnr5aeb2rCGjrWzJTZdcTTOdLa3LVpJHWMSeia5AdMaI13HWs2FbcSqAeaA9w1QdNQBtqfVxXL3tw5Oh7XaximVv2aV7fBn3s7be4UNBV5sQBQ6X-gmxZwTOnWb_E6nWQFVh77VQ9_qUKYCrh76VrLoxKLLhR_WmP77PCf8uAixlLD3RZiNx2DQ-oRmVDb6Zy-cPUbexLC-K-7_MgshZCd61rV_AZ3lpeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model</title><source>ScienceDirect Journals</source><creator>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creator><creatorcontrib>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creatorcontrib><description>The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.</description><identifier>ISSN: 1001-6058</identifier><identifier>EISSN: 1878-0342</identifier><identifier>DOI: 10.1016/S1001-6058(15)60541-8</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>cloud cavitation ; density correction method ; Engineering ; Engineering Fluid Dynamics ; filter-based model (FBM) ; hydrofoil ; Hydrology/Water Resources ; Numerical and Computational Physics ; Simulation ; unsteady behavior ; 基础 ; 数值分析 ; 校正方法 ; 模型 ; 水翼 ; 滤波器库 ; 空化数 ; 非定常特性</subject><ispartof>Journal of hydrodynamics. Series B, 2015-10, Vol.27 (5), p.795-808</ispartof><rights>2015 Publishing House for Journal of Hydrodynamics</rights><rights>China Ship Scientific Research Center 2015</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3</citedby><cites>FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86648X/86648X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creatorcontrib><title>Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model</title><title>Journal of hydrodynamics. Series B</title><addtitle>J Hydrodyn</addtitle><addtitle>Journal of Hydrodynamics</addtitle><description>The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.</description><subject>cloud cavitation</subject><subject>density correction method</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>filter-based model (FBM)</subject><subject>hydrofoil</subject><subject>Hydrology/Water Resources</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>unsteady behavior</subject><subject>基础</subject><subject>数值分析</subject><subject>校正方法</subject><subject>模型</subject><subject>水翼</subject><subject>滤波器库</subject><subject>空化数</subject><subject>非定常特性</subject><issn>1001-6058</issn><issn>1878-0342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUMFu1DAUjFCRaAufgGT1VKQG_BLbcU4IVS0gVXAAzpbXft71Kmu3drKQfj3epoVjT89PM_NmPFX1Fuh7oCA-_ABKoRaUy3Pg78pkUMsX1THITta0Zc1ReT9RXlUnOW8pbUVP2XF1_23aYfJGD0QHPczZZxIdGTdIppBH1HYmK9zovY_pAJghTpaYso969DEQneIULNFkM9sUXfQDWemMlhywQPzuNsV9WZ0fRkz1gu2ixeF19dLpIeObx3la_bq--nn5pb75_vnr5aeb2rCGjrWzJTZdcTTOdLa3LVpJHWMSeia5AdMaI13HWs2FbcSqAeaA9w1QdNQBtqfVxXL3tw5Oh7XaximVv2aV7fBn3s7be4UNBV5sQBQ6X-gmxZwTOnWb_E6nWQFVh77VQ9_qUKYCrh76VrLoxKLLhR_WmP77PCf8uAixlLD3RZiNx2DQ-oRmVDb6Zy-cPUbexLC-K-7_MgshZCd61rV_AZ3lpeo</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><general>Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20151001</creationdate><title>Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model</title><author>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>cloud cavitation</topic><topic>density correction method</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>filter-based model (FBM)</topic><topic>hydrofoil</topic><topic>Hydrology/Water Resources</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>unsteady behavior</topic><topic>基础</topic><topic>数值分析</topic><topic>校正方法</topic><topic>模型</topic><topic>水翼</topic><topic>滤波器库</topic><topic>空化数</topic><topic>非定常特性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of hydrodynamics. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model</atitle><jtitle>Journal of hydrodynamics. Series B</jtitle><stitle>J Hydrodyn</stitle><addtitle>Journal of Hydrodynamics</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>27</volume><issue>5</issue><spage>795</spage><epage>808</epage><pages>795-808</pages><issn>1001-6058</issn><eissn>1878-0342</eissn><abstract>The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1001-6058(15)60541-8</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-6058 |
ispartof | Journal of hydrodynamics. Series B, 2015-10, Vol.27 (5), p.795-808 |
issn | 1001-6058 1878-0342 |
language | eng |
recordid | cdi_wanfang_journals_sdlxyjyjz_e201505016 |
source | ScienceDirect Journals |
subjects | cloud cavitation density correction method Engineering Engineering Fluid Dynamics filter-based model (FBM) hydrofoil Hydrology/Water Resources Numerical and Computational Physics Simulation unsteady behavior 基础 数值分析 校正方法 模型 水翼 滤波器库 空化数 非定常特性 |
title | Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20the%20unsteady%20behavior%20of%20cloud%20cavitation%20around%20a%20hydrofoil%20based%20on%20an%20improved%20filter-based%20model&rft.jtitle=Journal%20of%20hydrodynamics.%20Series%20B&rft.au=%E5%BC%A0%E5%BE%B7%E8%83%9C%20%E7%8E%8B%E6%B5%B7%E5%AE%87%20%E6%96%BD%E5%8D%AB%E4%B8%9C%20%E5%BC%A0%E5%85%89%E5%BB%BA%20Van%20ESCH%20B.P.M.%EF%BC%88Bart%EF%BC%89&rft.date=2015-10-01&rft.volume=27&rft.issue=5&rft.spage=795&rft.epage=808&rft.pages=795-808&rft.issn=1001-6058&rft.eissn=1878-0342&rft_id=info:doi/10.1016/S1001-6058(15)60541-8&rft_dat=%3Cwanfang_jour_cross%3Esdlxyjyjz_e201505016%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=666876947&rft_wanfj_id=sdlxyjyjz_e201505016&rfr_iscdi=true |