Loading…

Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model

The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hydrodynamics. Series B 2015-10, Vol.27 (5), p.795-808
Main Author: 张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3
cites cdi_FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3
container_end_page 808
container_issue 5
container_start_page 795
container_title Journal of hydrodynamics. Series B
container_volume 27
creator 张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)
description The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.
doi_str_mv 10.1016/S1001-6058(15)60541-8
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sdlxyjyjz_e201505016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>666876947</cqvip_id><wanfj_id>sdlxyjyjz_e201505016</wanfj_id><els_id>S1001605815605418</els_id><sourcerecordid>sdlxyjyjz_e201505016</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3</originalsourceid><addsrcrecordid>eNqFUMFu1DAUjFCRaAufgGT1VKQG_BLbcU4IVS0gVXAAzpbXft71Kmu3drKQfj3epoVjT89PM_NmPFX1Fuh7oCA-_ABKoRaUy3Pg78pkUMsX1THITta0Zc1ReT9RXlUnOW8pbUVP2XF1_23aYfJGD0QHPczZZxIdGTdIppBH1HYmK9zovY_pAJghTpaYso969DEQneIULNFkM9sUXfQDWemMlhywQPzuNsV9WZ0fRkz1gu2ixeF19dLpIeObx3la_bq--nn5pb75_vnr5aeb2rCGjrWzJTZdcTTOdLa3LVpJHWMSeia5AdMaI13HWs2FbcSqAeaA9w1QdNQBtqfVxXL3tw5Oh7XaximVv2aV7fBn3s7be4UNBV5sQBQ6X-gmxZwTOnWb_E6nWQFVh77VQ9_qUKYCrh76VrLoxKLLhR_WmP77PCf8uAixlLD3RZiNx2DQ-oRmVDb6Zy-cPUbexLC-K-7_MgshZCd61rV_AZ3lpeo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model</title><source>ScienceDirect Journals</source><creator>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creator><creatorcontrib>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creatorcontrib><description>The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.</description><identifier>ISSN: 1001-6058</identifier><identifier>EISSN: 1878-0342</identifier><identifier>DOI: 10.1016/S1001-6058(15)60541-8</identifier><language>eng</language><publisher>Singapore: Elsevier Ltd</publisher><subject>cloud cavitation ; density correction method ; Engineering ; Engineering Fluid Dynamics ; filter-based model (FBM) ; hydrofoil ; Hydrology/Water Resources ; Numerical and Computational Physics ; Simulation ; unsteady behavior ; 基础 ; 数值分析 ; 校正方法 ; 模型 ; 水翼 ; 滤波器库 ; 空化数 ; 非定常特性</subject><ispartof>Journal of hydrodynamics. Series B, 2015-10, Vol.27 (5), p.795-808</ispartof><rights>2015 Publishing House for Journal of Hydrodynamics</rights><rights>China Ship Scientific Research Center 2015</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3</citedby><cites>FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86648X/86648X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creatorcontrib><title>Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model</title><title>Journal of hydrodynamics. Series B</title><addtitle>J Hydrodyn</addtitle><addtitle>Journal of Hydrodynamics</addtitle><description>The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.</description><subject>cloud cavitation</subject><subject>density correction method</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>filter-based model (FBM)</subject><subject>hydrofoil</subject><subject>Hydrology/Water Resources</subject><subject>Numerical and Computational Physics</subject><subject>Simulation</subject><subject>unsteady behavior</subject><subject>基础</subject><subject>数值分析</subject><subject>校正方法</subject><subject>模型</subject><subject>水翼</subject><subject>滤波器库</subject><subject>空化数</subject><subject>非定常特性</subject><issn>1001-6058</issn><issn>1878-0342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUMFu1DAUjFCRaAufgGT1VKQG_BLbcU4IVS0gVXAAzpbXft71Kmu3drKQfj3epoVjT89PM_NmPFX1Fuh7oCA-_ABKoRaUy3Pg78pkUMsX1THITta0Zc1ReT9RXlUnOW8pbUVP2XF1_23aYfJGD0QHPczZZxIdGTdIppBH1HYmK9zovY_pAJghTpaYso969DEQneIULNFkM9sUXfQDWemMlhywQPzuNsV9WZ0fRkz1gu2ixeF19dLpIeObx3la_bq--nn5pb75_vnr5aeb2rCGjrWzJTZdcTTOdLa3LVpJHWMSeia5AdMaI13HWs2FbcSqAeaA9w1QdNQBtqfVxXL3tw5Oh7XaximVv2aV7fBn3s7be4UNBV5sQBQ6X-gmxZwTOnWb_E6nWQFVh77VQ9_qUKYCrh76VrLoxKLLhR_WmP77PCf8uAixlLD3RZiNx2DQ-oRmVDb6Zy-cPUbexLC-K-7_MgshZCd61rV_AZ3lpeo</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creator><general>Elsevier Ltd</general><general>Springer Singapore</general><general>Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang 212013, China%Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600MB, The Netherlands</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20151001</creationdate><title>Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model</title><author>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>cloud cavitation</topic><topic>density correction method</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>filter-based model (FBM)</topic><topic>hydrofoil</topic><topic>Hydrology/Water Resources</topic><topic>Numerical and Computational Physics</topic><topic>Simulation</topic><topic>unsteady behavior</topic><topic>基础</topic><topic>数值分析</topic><topic>校正方法</topic><topic>模型</topic><topic>水翼</topic><topic>滤波器库</topic><topic>空化数</topic><topic>非定常特性</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of hydrodynamics. Series B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>张德胜 王海宇 施卫东 张光建 Van ESCH B.P.M.(Bart)</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model</atitle><jtitle>Journal of hydrodynamics. Series B</jtitle><stitle>J Hydrodyn</stitle><addtitle>Journal of Hydrodynamics</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>27</volume><issue>5</issue><spage>795</spage><epage>808</epage><pages>795-808</pages><issn>1001-6058</issn><eissn>1878-0342</eissn><abstract>The unsteady cavitation evolution around the Clark-Y hydrofoil is investigated in this paper, by using an improved filter-base model(FBM) with the density correction method(DCM). To improve the prediction accuracy, the filter scale is adjusted based on the grid size. The numerical results show that a small filter scale is crucial for the unsteady simulations of the cavity shedding flow. The hybrid method that combines the FBM and the DCM could help to limit the overprediction of the turbulent viscosity in the cavitation region on the wall of the hydrofoil and in the wake. The large value of the maximum density ratio ρ1 /ρv, clip promotes the mass transfer rate between the liquid phase and the vapor phase, which results in a large sheet cavity length and the vapor fraction rise inside the cavity. The cavity patterns predicted by the improved method are verified by the experimental visualizations. The time-average lift, the drag coefficient and the primary oscillating frequency St for the cavitation number σ= 0.8, the angle of attack, α= 8°, at a Reynolds number Re= 7×10^5 are 0.735, 0.115 and 0.183, respectively, and the predicted errors are 3.29%, 3.36% and 8.93%. The typical three stages in one revolution are well-captured, including the initiation of the sheet/attached cavity, the growth toward the trailing edge(TE) with the development of the re-entrant jet flow, and the large scale cloud cavity shedding. It is observed that the cloud cavity shedding flow induces the vortex pairs of the TE vortices in the wake and the shedding vortices. The positive vorticity vortex of the re-entrant jet and the TE vortices interacts and merges with the negative vorticity vortex of the leading edge(LE) cavity to produce the shedding flow.</abstract><cop>Singapore</cop><pub>Elsevier Ltd</pub><doi>10.1016/S1001-6058(15)60541-8</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-6058
ispartof Journal of hydrodynamics. Series B, 2015-10, Vol.27 (5), p.795-808
issn 1001-6058
1878-0342
language eng
recordid cdi_wanfang_journals_sdlxyjyjz_e201505016
source ScienceDirect Journals
subjects cloud cavitation
density correction method
Engineering
Engineering Fluid Dynamics
filter-based model (FBM)
hydrofoil
Hydrology/Water Resources
Numerical and Computational Physics
Simulation
unsteady behavior
基础
数值分析
校正方法
模型
水翼
滤波器库
空化数
非定常特性
title Numerical analysis of the unsteady behavior of cloud cavitation around a hydrofoil based on an improved filter-based model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T11%3A34%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20the%20unsteady%20behavior%20of%20cloud%20cavitation%20around%20a%20hydrofoil%20based%20on%20an%20improved%20filter-based%20model&rft.jtitle=Journal%20of%20hydrodynamics.%20Series%20B&rft.au=%E5%BC%A0%E5%BE%B7%E8%83%9C%20%E7%8E%8B%E6%B5%B7%E5%AE%87%20%E6%96%BD%E5%8D%AB%E4%B8%9C%20%E5%BC%A0%E5%85%89%E5%BB%BA%20Van%20ESCH%20B.P.M.%EF%BC%88Bart%EF%BC%89&rft.date=2015-10-01&rft.volume=27&rft.issue=5&rft.spage=795&rft.epage=808&rft.pages=795-808&rft.issn=1001-6058&rft.eissn=1878-0342&rft_id=info:doi/10.1016/S1001-6058(15)60541-8&rft_dat=%3Cwanfang_jour_cross%3Esdlxyjyjz_e201505016%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-fd6050b5ecfc7d9d3ed80f44819485c1c3cc8f743a56d26b214f159210ef0f1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=666876947&rft_wanfj_id=sdlxyjyjz_e201505016&rfr_iscdi=true