Loading…

Dimension of Slices Through Fractals with Initial Cubic Pattern

In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an (n-m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensi...

Full description

Saved in:
Bibliographic Details
Published in:Chinese annals of mathematics. Serie B 2017-09, Vol.38 (5), p.1145-1178
Main Authors: Xi, Lifeng, Wu, Wen, Xiong, Ying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c375t-ef369c71d4d93f5e77a75c140d2d45554d58c7512ca52094da25a9bcedba64653
cites cdi_FETCH-LOGICAL-c375t-ef369c71d4d93f5e77a75c140d2d45554d58c7512ca52094da25a9bcedba64653
container_end_page 1178
container_issue 5
container_start_page 1145
container_title Chinese annals of mathematics. Serie B
container_volume 38
creator Xi, Lifeng
Wu, Wen
Xiong, Ying
description In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an (n-m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensions of the slices of the fractal sets generated by "multirules" take the value in Marstrand's theorem, i.e., the dimension of the self-similar sets minus one. For the self-similar fractals generated with initial cube pattern, this sufficient condition also ensures that the projection measure μv is absolutely continuous with respect to the Lebesgue measure L^m. When μv〈〈L^m the connection of the local dimension of μv and the box dimension of slices is given.
doi_str_mv 10.1007/s11401-017-1029-1
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201705010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673697960</cqvip_id><wanfj_id>sxnk_e201705010</wanfj_id><sourcerecordid>sxnk_e201705010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c375t-ef369c71d4d93f5e77a75c140d2d45554d58c7512ca52094da25a9bcedba64653</originalsourceid><addsrcrecordid>eNp9kL1OwzAUhS0EEqXwAGwRDEyBe53YrieECoVKlUCizJbrOG1K67R2osLb4yoImJju8p2fewg5R7hGAHETEHPAFFCkCFSmeEB6OOCQcsrxkPSAMppKJuUxOQlhCYC5YNAjt_fV2rpQ1S6py-R1VRkbkunC1-18kYy8No1ehWRXNYtk7Kqm0qtk2M4qk7zoprHenZKjMhL27Pv2ydvoYTp8SifPj-Ph3SQ1mWBNasuMSyOwyAuZlcwKoQUzsXJBi5wxlhdsYARDajSjIPNCU6blzNhipnnOWdYnV53vTrtSu7la1q13MVGFD_euLI2fAwOESF525MbX29aG5hdFmeUZiIzTSGFHGV-H4G2pNr5aa_-pENR-UdUtqqKv2i-qMGpopwmRdXPr_zj_I7r4DlrUbr6Nup8kHptIITlkX3U5ggk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934307362</pqid></control><display><type>article</type><title>Dimension of Slices Through Fractals with Initial Cubic Pattern</title><source>Springer Link</source><creator>Xi, Lifeng ; Wu, Wen ; Xiong, Ying</creator><creatorcontrib>Xi, Lifeng ; Wu, Wen ; Xiong, Ying</creatorcontrib><description>In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an (n-m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensions of the slices of the fractal sets generated by "multirules" take the value in Marstrand's theorem, i.e., the dimension of the self-similar sets minus one. For the self-similar fractals generated with initial cube pattern, this sufficient condition also ensures that the projection measure μv is absolutely continuous with respect to the Lebesgue measure L^m. When μv〈〈L^m the connection of the local dimension of μv and the box dimension of slices is given.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-017-1029-1</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Euclidean geometry ; Euclidean space ; Fractals ; Hausdorff维数 ; Mathematics ; Mathematics and Statistics ; Self-similarity ; 分形维数 ; 切片 ; 勒贝格测度 ; 图形 ; 模式生成 ; 立方体 ; 自相似分形</subject><ispartof>Chinese annals of mathematics. Serie B, 2017-09, Vol.38 (5), p.1145-1178</ispartof><rights>Fudan University and Springer-Verlag GmbH Germany 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c375t-ef369c71d4d93f5e77a75c140d2d45554d58c7512ca52094da25a9bcedba64653</citedby><cites>FETCH-LOGICAL-c375t-ef369c71d4d93f5e77a75c140d2d45554d58c7512ca52094da25a9bcedba64653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/87055X/87055X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Xi, Lifeng</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><creatorcontrib>Xiong, Ying</creatorcontrib><title>Dimension of Slices Through Fractals with Initial Cubic Pattern</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><addtitle>Chinese Annals of Mathematics</addtitle><description>In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an (n-m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensions of the slices of the fractal sets generated by "multirules" take the value in Marstrand's theorem, i.e., the dimension of the self-similar sets minus one. For the self-similar fractals generated with initial cube pattern, this sufficient condition also ensures that the projection measure μv is absolutely continuous with respect to the Lebesgue measure L^m. When μv〈〈L^m the connection of the local dimension of μv and the box dimension of slices is given.</description><subject>Applications of Mathematics</subject><subject>Euclidean geometry</subject><subject>Euclidean space</subject><subject>Fractals</subject><subject>Hausdorff维数</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Self-similarity</subject><subject>分形维数</subject><subject>切片</subject><subject>勒贝格测度</subject><subject>图形</subject><subject>模式生成</subject><subject>立方体</subject><subject>自相似分形</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kL1OwzAUhS0EEqXwAGwRDEyBe53YrieECoVKlUCizJbrOG1K67R2osLb4yoImJju8p2fewg5R7hGAHETEHPAFFCkCFSmeEB6OOCQcsrxkPSAMppKJuUxOQlhCYC5YNAjt_fV2rpQ1S6py-R1VRkbkunC1-18kYy8No1ehWRXNYtk7Kqm0qtk2M4qk7zoprHenZKjMhL27Pv2ydvoYTp8SifPj-Ph3SQ1mWBNasuMSyOwyAuZlcwKoQUzsXJBi5wxlhdsYARDajSjIPNCU6blzNhipnnOWdYnV53vTrtSu7la1q13MVGFD_euLI2fAwOESF525MbX29aG5hdFmeUZiIzTSGFHGV-H4G2pNr5aa_-pENR-UdUtqqKv2i-qMGpopwmRdXPr_zj_I7r4DlrUbr6Nup8kHptIITlkX3U5ggk</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Xi, Lifeng</creator><creator>Wu, Wen</creator><creator>Xiong, Ying</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Department of Mathematics, Ningbo University, Ningbo 315211, Zhejiang, China%School of Mathematics, South China University of Technology, Guangzhou 510641,China%School of Mathematics, South China University of Technology, Guangzhou 510641, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20170901</creationdate><title>Dimension of Slices Through Fractals with Initial Cubic Pattern</title><author>Xi, Lifeng ; Wu, Wen ; Xiong, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c375t-ef369c71d4d93f5e77a75c140d2d45554d58c7512ca52094da25a9bcedba64653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Euclidean geometry</topic><topic>Euclidean space</topic><topic>Fractals</topic><topic>Hausdorff维数</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Self-similarity</topic><topic>分形维数</topic><topic>切片</topic><topic>勒贝格测度</topic><topic>图形</topic><topic>模式生成</topic><topic>立方体</topic><topic>自相似分形</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xi, Lifeng</creatorcontrib><creatorcontrib>Wu, Wen</creatorcontrib><creatorcontrib>Xiong, Ying</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xi, Lifeng</au><au>Wu, Wen</au><au>Xiong, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dimension of Slices Through Fractals with Initial Cubic Pattern</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><addtitle>Chinese Annals of Mathematics</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>38</volume><issue>5</issue><spage>1145</spage><epage>1178</epage><pages>1145-1178</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>In this paper, the Hausdorff dimension of the intersection of self-similar fractals in Euclidean space R^n generated from an initial cube pattern with an (n-m)-dimensional hyperplane V in a fixed direction is discussed. The authors give a sufficient condition which ensures that the Hausdorff dimensions of the slices of the fractal sets generated by "multirules" take the value in Marstrand's theorem, i.e., the dimension of the self-similar sets minus one. For the self-similar fractals generated with initial cube pattern, this sufficient condition also ensures that the projection measure μv is absolutely continuous with respect to the Lebesgue measure L^m. When μv〈〈L^m the connection of the local dimension of μv and the box dimension of slices is given.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-017-1029-1</doi><tpages>34</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9599
ispartof Chinese annals of mathematics. Serie B, 2017-09, Vol.38 (5), p.1145-1178
issn 0252-9599
1860-6261
language eng
recordid cdi_wanfang_journals_sxnk_e201705010
source Springer Link
subjects Applications of Mathematics
Euclidean geometry
Euclidean space
Fractals
Hausdorff维数
Mathematics
Mathematics and Statistics
Self-similarity
分形维数
切片
勒贝格测度
图形
模式生成
立方体
自相似分形
title Dimension of Slices Through Fractals with Initial Cubic Pattern
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A46%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dimension%20of%20Slices%20Through%20Fractals%20with%20Initial%20Cubic%20Pattern&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Xi,%20Lifeng&rft.date=2017-09-01&rft.volume=38&rft.issue=5&rft.spage=1145&rft.epage=1178&rft.pages=1145-1178&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-017-1029-1&rft_dat=%3Cwanfang_jour_proqu%3Esxnk_e201705010%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c375t-ef369c71d4d93f5e77a75c140d2d45554d58c7512ca52094da25a9bcedba64653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1934307362&rft_id=info:pmid/&rft_cqvip_id=673697960&rft_wanfj_id=sxnk_e201705010&rfr_iscdi=true