Loading…
Time-Consistent Asymptotic Exponential Arbitrage with Small Probable Maximum Loss
Based on a concept of asymptotic exponential arbitrage proposed by Föllmer-Schachermayer, the author introduces a new formulation of asymptotic arbitrage with two main differences from the previous one: Firstly, the realising strategy does not depend on the maturity time while the previous one does,...
Saved in:
Published in: | Chinese annals of mathematics. Serie B 2019-07, Vol.40 (4), p.495-500 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c300t-c3b167e5df99096731915640e588362d11b00e7abfc4fc88463fe4ea3091d5c3 |
container_end_page | 500 |
container_issue | 4 |
container_start_page | 495 |
container_title | Chinese annals of mathematics. Serie B |
container_volume | 40 |
creator | Li, Jinfeng |
description | Based on a concept of asymptotic exponential arbitrage proposed by Föllmer-Schachermayer, the author introduces a new formulation of asymptotic arbitrage with two main differences from the previous one: Firstly, the realising strategy does not depend on the maturity time while the previous one does, and secondly, the probable maximum loss is allowed to be small constant instead of a decreasing function of time. The main result gives a sufficient condition on stock prices for the existence of such asymptotic arbitrage. As a consequence, she gives a new proof of a conjecture of Föllmer and Schachermayer. |
doi_str_mv | 10.1007/s11401-019-0147-3 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxnk_e201904002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>sxnk_e201904002</wanfj_id><sourcerecordid>sxnk_e201904002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c300t-c3b167e5df99096731915640e588362d11b00e7abfc4fc88463fe4ea3091d5c3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMoOKc_wLuAF15Vz0natLkcwy-YqLj7kHbp7GzTmWRs-_dmVNiVF0kgPO97OA8h1wh3CJDfe8QUMAGU8aR5wk_ICAsBiWACT8kIWMYSmUl5Ti68X8EBymBEPuZNZ5Jpb33jg7GBTvy-W4c-NBV92K17G_8a3dKJK5vg9NLQbRO-6Gen25a-u77UZWvoq9413aajs977S3JW69abq793TOaPD_PpczJ7e3qZTmZJxQFCvEsUuckWtZQgRc5RYiZSMFlRcMEWiCWAyXVZV2ldFUUqeG1SozlIXGQVH5PboXarba3tUq36jbNxoPI7-60MiyogBWCRvBnItet_NsaHI8pYlCaLtMBI4UBVLi7hTK3Wrum02ysEdVCsBsUqBtTBnuIxw4aMj6xdGnds_j_0C76wfU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2240198481</pqid></control><display><type>article</type><title>Time-Consistent Asymptotic Exponential Arbitrage with Small Probable Maximum Loss</title><source>Springer Link</source><creator>Li, Jinfeng</creator><creatorcontrib>Li, Jinfeng</creatorcontrib><description>Based on a concept of asymptotic exponential arbitrage proposed by Föllmer-Schachermayer, the author introduces a new formulation of asymptotic arbitrage with two main differences from the previous one: Firstly, the realising strategy does not depend on the maturity time while the previous one does, and secondly, the probable maximum loss is allowed to be small constant instead of a decreasing function of time. The main result gives a sufficient condition on stock prices for the existence of such asymptotic arbitrage. As a consequence, she gives a new proof of a conjecture of Föllmer and Schachermayer.</description><identifier>ISSN: 0252-9599</identifier><identifier>EISSN: 1860-6261</identifier><identifier>DOI: 10.1007/s11401-019-0147-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Arbitrage ; Asymptotic properties ; Mathematics ; Mathematics and Statistics</subject><ispartof>Chinese annals of mathematics. Serie B, 2019-07, Vol.40 (4), p.495-500</ispartof><rights>The Editorial Office of CAM and Springer-Verlag Berlin Heidelberg 2019</rights><rights>Copyright Springer Nature B.V. 2019</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c300t-c3b167e5df99096731915640e588362d11b00e7abfc4fc88463fe4ea3091d5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/sxnk-e/sxnk-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Jinfeng</creatorcontrib><title>Time-Consistent Asymptotic Exponential Arbitrage with Small Probable Maximum Loss</title><title>Chinese annals of mathematics. Serie B</title><addtitle>Chin. Ann. Math. Ser. B</addtitle><description>Based on a concept of asymptotic exponential arbitrage proposed by Föllmer-Schachermayer, the author introduces a new formulation of asymptotic arbitrage with two main differences from the previous one: Firstly, the realising strategy does not depend on the maturity time while the previous one does, and secondly, the probable maximum loss is allowed to be small constant instead of a decreasing function of time. The main result gives a sufficient condition on stock prices for the existence of such asymptotic arbitrage. As a consequence, she gives a new proof of a conjecture of Föllmer and Schachermayer.</description><subject>Applications of Mathematics</subject><subject>Arbitrage</subject><subject>Asymptotic properties</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0252-9599</issn><issn>1860-6261</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp1kF1LwzAUhoMoOKc_wLuAF15Vz0natLkcwy-YqLj7kHbp7GzTmWRs-_dmVNiVF0kgPO97OA8h1wh3CJDfe8QUMAGU8aR5wk_ICAsBiWACT8kIWMYSmUl5Ti68X8EBymBEPuZNZ5Jpb33jg7GBTvy-W4c-NBV92K17G_8a3dKJK5vg9NLQbRO-6Gen25a-u77UZWvoq9413aajs977S3JW69abq793TOaPD_PpczJ7e3qZTmZJxQFCvEsUuckWtZQgRc5RYiZSMFlRcMEWiCWAyXVZV2ldFUUqeG1SozlIXGQVH5PboXarba3tUq36jbNxoPI7-60MiyogBWCRvBnItet_NsaHI8pYlCaLtMBI4UBVLi7hTK3Wrum02ysEdVCsBsUqBtTBnuIxw4aMj6xdGnds_j_0C76wfU8</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Li, Jinfeng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>School of Management, Fudan University, Shanghai 200433, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20190701</creationdate><title>Time-Consistent Asymptotic Exponential Arbitrage with Small Probable Maximum Loss</title><author>Li, Jinfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c300t-c3b167e5df99096731915640e588362d11b00e7abfc4fc88463fe4ea3091d5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Applications of Mathematics</topic><topic>Arbitrage</topic><topic>Asymptotic properties</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jinfeng</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese annals of mathematics. Serie B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jinfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-Consistent Asymptotic Exponential Arbitrage with Small Probable Maximum Loss</atitle><jtitle>Chinese annals of mathematics. Serie B</jtitle><stitle>Chin. Ann. Math. Ser. B</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>40</volume><issue>4</issue><spage>495</spage><epage>500</epage><pages>495-500</pages><issn>0252-9599</issn><eissn>1860-6261</eissn><abstract>Based on a concept of asymptotic exponential arbitrage proposed by Föllmer-Schachermayer, the author introduces a new formulation of asymptotic arbitrage with two main differences from the previous one: Firstly, the realising strategy does not depend on the maturity time while the previous one does, and secondly, the probable maximum loss is allowed to be small constant instead of a decreasing function of time. The main result gives a sufficient condition on stock prices for the existence of such asymptotic arbitrage. As a consequence, she gives a new proof of a conjecture of Föllmer and Schachermayer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11401-019-0147-3</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9599 |
ispartof | Chinese annals of mathematics. Serie B, 2019-07, Vol.40 (4), p.495-500 |
issn | 0252-9599 1860-6261 |
language | eng |
recordid | cdi_wanfang_journals_sxnk_e201904002 |
source | Springer Link |
subjects | Applications of Mathematics Arbitrage Asymptotic properties Mathematics Mathematics and Statistics |
title | Time-Consistent Asymptotic Exponential Arbitrage with Small Probable Maximum Loss |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T08%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-Consistent%20Asymptotic%20Exponential%20Arbitrage%20with%20Small%20Probable%20Maximum%20Loss&rft.jtitle=Chinese%20annals%20of%20mathematics.%20Serie%20B&rft.au=Li,%20Jinfeng&rft.date=2019-07-01&rft.volume=40&rft.issue=4&rft.spage=495&rft.epage=500&rft.pages=495-500&rft.issn=0252-9599&rft.eissn=1860-6261&rft_id=info:doi/10.1007/s11401-019-0147-3&rft_dat=%3Cwanfang_jour_proqu%3Esxnk_e201904002%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c300t-c3b167e5df99096731915640e588362d11b00e7abfc4fc88463fe4ea3091d5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2240198481&rft_id=info:pmid/&rft_wanfj_id=sxnk_e201904002&rfr_iscdi=true |