Loading…
METRIC ENTROPY OF HOMEOMORPHISM ON NON-COMPACT METRIC SPACE
Let T : X → X be a uniformly continuous homeomorphism on a non-compact metric space (X, d). Denote by X* = X ∪ {x*} the one point compactification of X and T * : X* → X* the homeomorphism on X* satisfying T *|X = T and T *x* = x*. We show that their topological entropies satisfy hd(T, X) ≥ h(T *, X*...
Saved in:
Published in: | Acta mathematica scientia 2011, Vol.31 (1), p.102-108 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c402t-278177512be5d431cb8a116c479c0c85f986d8a53002209ff0fd6733920387763 |
---|---|
cites | cdi_FETCH-LOGICAL-c402t-278177512be5d431cb8a116c479c0c85f986d8a53002209ff0fd6733920387763 |
container_end_page | 108 |
container_issue | 1 |
container_start_page | 102 |
container_title | Acta mathematica scientia |
container_volume | 31 |
creator | 周云华 |
description | Let T : X → X be a uniformly continuous homeomorphism on a non-compact metric space (X, d). Denote by X* = X ∪ {x*} the one point compactification of X and T * : X* → X* the homeomorphism on X* satisfying T *|X = T and T *x* = x*. We show that their topological entropies satisfy hd(T, X) ≥ h(T *, X*) if X is locally compact. We also give a note on Katok’s measure theoretic entropy on a compact metric space. |
doi_str_mv | 10.1016/S0252-9602(11)60212-9 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201101012</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>36533532</cqvip_id><wanfj_id>sxwlxb_e201101012</wanfj_id><els_id>S0252960211602129</els_id><sourcerecordid>sxwlxb_e201101012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-278177512be5d431cb8a116c479c0c85f986d8a53002209ff0fd6733920387763</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEEuPjJyBVXIBDwU6WphUHNFWFTaLLtI0Dp6hLU-jo2q3Z-Pj3BDZx5WRbel5bfgg5Q7hGwOBmApRTPwqAXiJeuYJu2iMd5MI1EIp90vlDDsmRtXNwORp0O-Q2TabjQewlw-lYjp49ee_1ZZrIVI5H_cEk9eTQG8qhH8t01Iun3g6fuCE5IQdFVllzuqvH5Ok-mcZ9_1E-DOLeo6-7QNc-FSEKwZHODM-7DPUszBAD3RWRBh3yIgqDPMw4A6AUoqKAIg8EYxEFFgoRsGNytd37kdVFVr-oebNpa3dR2c-P6nOmDAV0JgCpYy-27LJtVhtj12pRWm2qKqtNs7Eq5FwgRgCO5FtSt421rSnUsi0XWfulENSPV_XrVf1IU4jq16uKXO5umzPu5ffStMrq0tTa5GVr9FrlTfnvhvPd5demflmV7qNZpt-KsjKKBZwxzij7BiZpghk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>855711900</pqid></control><display><type>article</type><title>METRIC ENTROPY OF HOMEOMORPHISM ON NON-COMPACT METRIC SPACE</title><source>ScienceDirect Journals</source><creator>周云华</creator><creatorcontrib>周云华</creatorcontrib><description>Let T : X → X be a uniformly continuous homeomorphism on a non-compact metric space (X, d). Denote by X* = X ∪ {x*} the one point compactification of X and T * : X* → X* the homeomorphism on X* satisfying T *|X = T and T *x* = x*. We show that their topological entropies satisfy hd(T, X) ≥ h(T *, X*) if X is locally compact. We also give a note on Katok’s measure theoretic entropy on a compact metric space.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(11)60212-9</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>37A05 ; 37A35 ; Entropy ; metric entropy ; Metric space ; non-compact metric space ; one point compactification ; Topological entropy ; Topology ; 一致连续 ; 局部紧 ; 拓扑熵 ; 熵理论 ; 紧度量空间 ; 紧致度量空间</subject><ispartof>Acta mathematica scientia, 2011, Vol.31 (1), p.102-108</ispartof><rights>2011 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-278177512be5d431cb8a116c479c0c85f986d8a53002209ff0fd6733920387763</citedby><cites>FETCH-LOGICAL-c402t-278177512be5d431cb8a116c479c0c85f986d8a53002209ff0fd6733920387763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>周云华</creatorcontrib><title>METRIC ENTROPY OF HOMEOMORPHISM ON NON-COMPACT METRIC SPACE</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>Let T : X → X be a uniformly continuous homeomorphism on a non-compact metric space (X, d). Denote by X* = X ∪ {x*} the one point compactification of X and T * : X* → X* the homeomorphism on X* satisfying T *|X = T and T *x* = x*. We show that their topological entropies satisfy hd(T, X) ≥ h(T *, X*) if X is locally compact. We also give a note on Katok’s measure theoretic entropy on a compact metric space.</description><subject>37A05</subject><subject>37A35</subject><subject>Entropy</subject><subject>metric entropy</subject><subject>Metric space</subject><subject>non-compact metric space</subject><subject>one point compactification</subject><subject>Topological entropy</subject><subject>Topology</subject><subject>一致连续</subject><subject>局部紧</subject><subject>拓扑熵</subject><subject>熵理论</subject><subject>紧度量空间</subject><subject>紧致度量空间</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEEuPjJyBVXIBDwU6WphUHNFWFTaLLtI0Dp6hLU-jo2q3Z-Pj3BDZx5WRbel5bfgg5Q7hGwOBmApRTPwqAXiJeuYJu2iMd5MI1EIp90vlDDsmRtXNwORp0O-Q2TabjQewlw-lYjp49ee_1ZZrIVI5H_cEk9eTQG8qhH8t01Iun3g6fuCE5IQdFVllzuqvH5Ok-mcZ9_1E-DOLeo6-7QNc-FSEKwZHODM-7DPUszBAD3RWRBh3yIgqDPMw4A6AUoqKAIg8EYxEFFgoRsGNytd37kdVFVr-oebNpa3dR2c-P6nOmDAV0JgCpYy-27LJtVhtj12pRWm2qKqtNs7Eq5FwgRgCO5FtSt421rSnUsi0XWfulENSPV_XrVf1IU4jq16uKXO5umzPu5ffStMrq0tTa5GVr9FrlTfnvhvPd5demflmV7qNZpt-KsjKKBZwxzij7BiZpghk</recordid><startdate>2011</startdate><enddate>2011</enddate><creator>周云华</creator><general>Elsevier Ltd</general><general>College of Mathematics and Statistics, Chongqing University, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W94</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>2011</creationdate><title>METRIC ENTROPY OF HOMEOMORPHISM ON NON-COMPACT METRIC SPACE</title><author>周云华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-278177512be5d431cb8a116c479c0c85f986d8a53002209ff0fd6733920387763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>37A05</topic><topic>37A35</topic><topic>Entropy</topic><topic>metric entropy</topic><topic>Metric space</topic><topic>non-compact metric space</topic><topic>one point compactification</topic><topic>Topological entropy</topic><topic>Topology</topic><topic>一致连续</topic><topic>局部紧</topic><topic>拓扑熵</topic><topic>熵理论</topic><topic>紧度量空间</topic><topic>紧致度量空间</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>周云华</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-自然科学</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>周云华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>METRIC ENTROPY OF HOMEOMORPHISM ON NON-COMPACT METRIC SPACE</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2011</date><risdate>2011</risdate><volume>31</volume><issue>1</issue><spage>102</spage><epage>108</epage><pages>102-108</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>Let T : X → X be a uniformly continuous homeomorphism on a non-compact metric space (X, d). Denote by X* = X ∪ {x*} the one point compactification of X and T * : X* → X* the homeomorphism on X* satisfying T *|X = T and T *x* = x*. We show that their topological entropies satisfy hd(T, X) ≥ h(T *, X*) if X is locally compact. We also give a note on Katok’s measure theoretic entropy on a compact metric space.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(11)60212-9</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2011, Vol.31 (1), p.102-108 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201101012 |
source | ScienceDirect Journals |
subjects | 37A05 37A35 Entropy metric entropy Metric space non-compact metric space one point compactification Topological entropy Topology 一致连续 局部紧 拓扑熵 熵理论 紧度量空间 紧致度量空间 |
title | METRIC ENTROPY OF HOMEOMORPHISM ON NON-COMPACT METRIC SPACE |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A01%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=METRIC%20ENTROPY%20OF%20HOMEOMORPHISM%20ON%20NON-COMPACT%20METRIC%20SPACE&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E5%91%A8%E4%BA%91%E5%8D%8E&rft.date=2011&rft.volume=31&rft.issue=1&rft.spage=102&rft.epage=108&rft.pages=102-108&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(11)60212-9&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201101012%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c402t-278177512be5d431cb8a116c479c0c85f986d8a53002209ff0fd6733920387763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=855711900&rft_id=info:pmid/&rft_cqvip_id=36533532&rft_wanfj_id=sxwlxb_e201101012&rfr_iscdi=true |