Loading…

TAUBERIAN THEOREMS FOR WEAK ALMOST CONVERGENT FUNCTIONS

The almost convergent function which was introduced by Raimi [6] and discussed by Ho [4], Das and Nanda [2, 3], is the continuous analogue of almost convergent sequences (see [5]). In this paper, we establish the Tauberian conditions and the Cauchy criteria for weak almost convergent functions on R2...

Full description

Saved in:
Bibliographic Details
Published in:Acta mathematica scientia 2011-05, Vol.31 (3), p.1203-1212
Main Author: Kuo, Meng-Kuang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c350t-587cfdd9a2ea752943a444f5ed96fe574c85d25599217bcdebaf892b83ff17463
container_end_page 1212
container_issue 3
container_start_page 1203
container_title Acta mathematica scientia
container_volume 31
creator Kuo, Meng-Kuang
description The almost convergent function which was introduced by Raimi [6] and discussed by Ho [4], Das and Nanda [2, 3], is the continuous analogue of almost convergent sequences (see [5]). In this paper, we establish the Tauberian conditions and the Cauchy criteria for weak almost convergent functions on R2+ .
doi_str_mv 10.1016/S0252-9602(11)60310-X
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201103038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>37887489</cqvip_id><wanfj_id>sxwlxb_e201103038</wanfj_id><els_id>S025296021160310X</els_id><sourcerecordid>sxwlxb_e201103038</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-587cfdd9a2ea752943a444f5ed96fe574c85d25599217bcdebaf892b83ff17463</originalsourceid><addsrcrecordid>eNqFkMtOwzAURC0EEuXxCUhhB4uAn7G9QqFKaUVJpDYFdpbr2BBUEohbKH-PocCW1ZWuzsxoBoAjBM8QRMn5FGKGY5lAfILQaQIJgvH9FughxsMbCr4Nen_ILtjz_gkGHU5oD_AynV1mk1GaR-UwKybZzTQaFJPoLkuvo3R8U0zLqF_kt9nkKsvLaDDL--WoyKcHYMfphbeHP3cfzAZZ2R_G4-Jq1E_HsSEMLmMmuHFVJTW2mjMsKdGUUsdsJRNnGadGsAozJiVGfG4qO9dOSDwXxDnEaUL2wenG9103TjcP6qlddU1IVH79vljPlcUQIUggEYE92bAvXfu6sn6pnmtv7GKhG9uuvApjyUQSCmlA2QY1Xet9Z5166epn3X0E6ItL1Peo6msxhZD6HlXdB93FRmdD57fadsqb2jbGVnVnzVJVbf2vw_FP8mPbPLzWodJvNOFCcCok-QSj9IN-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1019693404</pqid></control><display><type>article</type><title>TAUBERIAN THEOREMS FOR WEAK ALMOST CONVERGENT FUNCTIONS</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Kuo, Meng-Kuang</creator><creatorcontrib>Kuo, Meng-Kuang</creatorcontrib><description>The almost convergent function which was introduced by Raimi [6] and discussed by Ho [4], Das and Nanda [2, 3], is the continuous analogue of almost convergent sequences (see [5]). In this paper, we establish the Tauberian conditions and the Cauchy criteria for weak almost convergent functions on R2+ .</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(11)60310-X</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>40E05 ; 40G99 ; almost convergent functions ; Analogue ; Cauchy criterions ; Criteria ; Das ; Mathematical analysis ; Tauberian theorems ; Theorems ; weak almost convergent functions ; 定理 ; 收敛序列 ; 柯西准则</subject><ispartof>Acta mathematica scientia, 2011-05, Vol.31 (3), p.1203-1212</ispartof><rights>2011 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-587cfdd9a2ea752943a444f5ed96fe574c85d25599217bcdebaf892b83ff17463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Kuo, Meng-Kuang</creatorcontrib><title>TAUBERIAN THEOREMS FOR WEAK ALMOST CONVERGENT FUNCTIONS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>The almost convergent function which was introduced by Raimi [6] and discussed by Ho [4], Das and Nanda [2, 3], is the continuous analogue of almost convergent sequences (see [5]). In this paper, we establish the Tauberian conditions and the Cauchy criteria for weak almost convergent functions on R2+ .</description><subject>40E05</subject><subject>40G99</subject><subject>almost convergent functions</subject><subject>Analogue</subject><subject>Cauchy criterions</subject><subject>Criteria</subject><subject>Das</subject><subject>Mathematical analysis</subject><subject>Tauberian theorems</subject><subject>Theorems</subject><subject>weak almost convergent functions</subject><subject>定理</subject><subject>收敛序列</subject><subject>柯西准则</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAURC0EEuXxCUhhB4uAn7G9QqFKaUVJpDYFdpbr2BBUEohbKH-PocCW1ZWuzsxoBoAjBM8QRMn5FGKGY5lAfILQaQIJgvH9FughxsMbCr4Nen_ILtjz_gkGHU5oD_AynV1mk1GaR-UwKybZzTQaFJPoLkuvo3R8U0zLqF_kt9nkKsvLaDDL--WoyKcHYMfphbeHP3cfzAZZ2R_G4-Jq1E_HsSEMLmMmuHFVJTW2mjMsKdGUUsdsJRNnGadGsAozJiVGfG4qO9dOSDwXxDnEaUL2wenG9103TjcP6qlddU1IVH79vljPlcUQIUggEYE92bAvXfu6sn6pnmtv7GKhG9uuvApjyUQSCmlA2QY1Xet9Z5166epn3X0E6ItL1Peo6msxhZD6HlXdB93FRmdD57fadsqb2jbGVnVnzVJVbf2vw_FP8mPbPLzWodJvNOFCcCok-QSj9IN-</recordid><startdate>20110501</startdate><enddate>20110501</enddate><creator>Kuo, Meng-Kuang</creator><general>Elsevier Ltd</general><general>Center for General Education, Jen-Teh Junior College of Medicine, Nursing and Management NO, 79-9 Sha-Luen Hu Xi-Zhou Li Hou-Loung Town, Miaoli County, Taiwan, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20110501</creationdate><title>TAUBERIAN THEOREMS FOR WEAK ALMOST CONVERGENT FUNCTIONS</title><author>Kuo, Meng-Kuang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-587cfdd9a2ea752943a444f5ed96fe574c85d25599217bcdebaf892b83ff17463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>40E05</topic><topic>40G99</topic><topic>almost convergent functions</topic><topic>Analogue</topic><topic>Cauchy criterions</topic><topic>Criteria</topic><topic>Das</topic><topic>Mathematical analysis</topic><topic>Tauberian theorems</topic><topic>Theorems</topic><topic>weak almost convergent functions</topic><topic>定理</topic><topic>收敛序列</topic><topic>柯西准则</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Meng-Kuang</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Meng-Kuang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>TAUBERIAN THEOREMS FOR WEAK ALMOST CONVERGENT FUNCTIONS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2011-05-01</date><risdate>2011</risdate><volume>31</volume><issue>3</issue><spage>1203</spage><epage>1212</epage><pages>1203-1212</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>The almost convergent function which was introduced by Raimi [6] and discussed by Ho [4], Das and Nanda [2, 3], is the continuous analogue of almost convergent sequences (see [5]). In this paper, we establish the Tauberian conditions and the Cauchy criteria for weak almost convergent functions on R2+ .</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(11)60310-X</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0252-9602
ispartof Acta mathematica scientia, 2011-05, Vol.31 (3), p.1203-1212
issn 0252-9602
1572-9087
language eng
recordid cdi_wanfang_journals_sxwlxb_e201103038
source ScienceDirect Freedom Collection 2022-2024
subjects 40E05
40G99
almost convergent functions
Analogue
Cauchy criterions
Criteria
Das
Mathematical analysis
Tauberian theorems
Theorems
weak almost convergent functions
定理
收敛序列
柯西准则
title TAUBERIAN THEOREMS FOR WEAK ALMOST CONVERGENT FUNCTIONS
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A06%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=TAUBERIAN%20THEOREMS%20FOR%20WEAK%20ALMOST%20CONVERGENT%20FUNCTIONS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=Kuo,%20Meng-Kuang&rft.date=2011-05-01&rft.volume=31&rft.issue=3&rft.spage=1203&rft.epage=1212&rft.pages=1203-1212&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(11)60310-X&rft_dat=%3Cwanfang_jour_proqu%3Esxwlxb_e201103038%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-587cfdd9a2ea752943a444f5ed96fe574c85d25599217bcdebaf892b83ff17463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1019693404&rft_id=info:pmid/&rft_cqvip_id=37887489&rft_wanfj_id=sxwlxb_e201103038&rfr_iscdi=true