Loading…
ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS
Suppose that X is a right process which is associated with a semi-Dirichlet form (ε, D(ε)) on L2(E; m). Let J be the jumping measure of (ε, D(ε)) satisfying J(E x E- d) 〈 ∞. Let u E D(ε)b := D(ε) N L(E; m), we have the following Pukushima's decomposition u(Xt)-u(X0) --- Mut + Nut. Define Pu f(x) = E...
Saved in:
Published in: | Acta mathematica scientia 2016-11, Vol.36 (6), p.1683-1698 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c318t-439d65e8807ae462cd5efa2c07d3637f0e2c2faaa513aca23c4083d70ccd04be3 |
container_end_page | 1698 |
container_issue | 6 |
container_start_page | 1683 |
container_title | Acta mathematica scientia |
container_volume | 36 |
creator | 韩新方 马丽 |
description | Suppose that X is a right process which is associated with a semi-Dirichlet form (ε, D(ε)) on L2(E; m). Let J be the jumping measure of (ε, D(ε)) satisfying J(E x E- d) 〈 ∞. Let u E D(ε)b := D(ε) N L(E; m), we have the following Pukushima's decomposition u(Xt)-u(X0) --- Mut + Nut. Define Pu f(x) = Ex[eNT f(Xt)]. Let Qu(f,g) = ε(f,g)+ε(u, fg) for f, g E D(ε)b. In the first part, under some assumptions we show that (Qu, D(ε)b) is lower semi-bounded if and only if there exists a constant a0 〉 0 such that /Put/2 ≤eaot for every t 〉 0. If one of these assertions holds, then (Put〉0is strongly continuous on L2(E;m). If X is equipped with a differential structure, then under some other assumptions, these conclusions remain valid without assuming J(E x E - d) 〈 ∞. Some examples are also given in this part. Let At be a local continuous additive functional with zero quadratic variation. In the second part, we get the representation of At and give two sufficient conditions for PAf(x) = Ex[eAtf(Xt)] to be strongly continuous. |
doi_str_mv | 10.1016/S0252-9602(16)30099-6 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_sxwlxb_e201606010</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670752066</cqvip_id><wanfj_id>sxwlxb_e201606010</wanfj_id><els_id>S0252960216300996</els_id><sourcerecordid>sxwlxb_e201606010</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-439d65e8807ae462cd5efa2c07d3637f0e2c2faaa513aca23c4083d70ccd04be3</originalsourceid><addsrcrecordid>eNqFkE1PhDAQhhujievHTzAhnvSATlso7Mk02HWJCxiKGr00tRTFKKvg57-366pXT9Np3mfemRehHQwHGDA7lEBC4o8ZkD3M9inAeOyzFTTCYeS-IY5W0ehPso42huEeHEdYMEKmyL0TkYuSz9JrcexNxFWe8dw_5YlXlTyXk6LMeJU6mXt5GS9PiwvvrCwSIaWQHpeySFJeOfQyraaeFFnqH6dlmkxnolowmdxCa41-GOz2T91E5xNRJVN_VpykCZ_5huL4xQ_ouGahjWOItA0YMXVoG00MRDVlNGrAEkMarXWIqTaaUBNATOsIjKkhuLF0E-0v577rrtHdrbqfv_adc1TDx_vDx42yxJ0NDDA4bbjUmn4-DL1t1FPfPur-U2FQi1TVd6pqEZly3XeqijnuaMlZd8hba3s1mNZ2xtZtb82LquftvxN2f5zv5t3tc-v2_LVmEUQhAcboFyTBgh8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS</title><source>ScienceDirect Freedom Collection</source><source>Springer Nature</source><creator>韩新方 马丽</creator><creatorcontrib>韩新方 马丽</creatorcontrib><description>Suppose that X is a right process which is associated with a semi-Dirichlet form (ε, D(ε)) on L2(E; m). Let J be the jumping measure of (ε, D(ε)) satisfying J(E x E- d) 〈 ∞. Let u E D(ε)b := D(ε) N L(E; m), we have the following Pukushima's decomposition u(Xt)-u(X0) --- Mut + Nut. Define Pu f(x) = Ex[eNT f(Xt)]. Let Qu(f,g) = ε(f,g)+ε(u, fg) for f, g E D(ε)b. In the first part, under some assumptions we show that (Qu, D(ε)b) is lower semi-bounded if and only if there exists a constant a0 〉 0 such that /Put/2 ≤eaot for every t 〉 0. If one of these assertions holds, then (Put〉0is strongly continuous on L2(E;m). If X is equipped with a differential structure, then under some other assumptions, these conclusions remain valid without assuming J(E x E - d) 〈 ∞. Some examples are also given in this part. Let At be a local continuous additive functional with zero quadratic variation. In the second part, we get the representation of At and give two sufficient conditions for PAf(x) = Ex[eAtf(Xt)] to be strongly continuous.</description><identifier>ISSN: 0252-9602</identifier><identifier>EISSN: 1572-9087</identifier><identifier>DOI: 10.1016/S0252-9602(16)30099-6</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>60J35 ; 60J55 ; generalized Feynman-Kac semigroup ; lower semi-bounded ; representation of local continuous additive functional with zero quadratic variation ; semi-Dirichlet form ; strong continuity ; 充分条件 ; 半狄氏型 ; 广义 ; 形态 ; 微分结构 ; 转化 ; 连续可加泛函 ; 马尔可夫过程</subject><ispartof>Acta mathematica scientia, 2016-11, Vol.36 (6), p.1683-1698</ispartof><rights>2016 Wuhan Institute of Physics and Mathematics</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c318t-439d65e8807ae462cd5efa2c07d3637f0e2c2faaa513aca23c4083d70ccd04be3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86464X/86464X.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>韩新方 马丽</creatorcontrib><title>ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS</title><title>Acta mathematica scientia</title><addtitle>Acta Mathematica Scientia</addtitle><description>Suppose that X is a right process which is associated with a semi-Dirichlet form (ε, D(ε)) on L2(E; m). Let J be the jumping measure of (ε, D(ε)) satisfying J(E x E- d) 〈 ∞. Let u E D(ε)b := D(ε) N L(E; m), we have the following Pukushima's decomposition u(Xt)-u(X0) --- Mut + Nut. Define Pu f(x) = Ex[eNT f(Xt)]. Let Qu(f,g) = ε(f,g)+ε(u, fg) for f, g E D(ε)b. In the first part, under some assumptions we show that (Qu, D(ε)b) is lower semi-bounded if and only if there exists a constant a0 〉 0 such that /Put/2 ≤eaot for every t 〉 0. If one of these assertions holds, then (Put〉0is strongly continuous on L2(E;m). If X is equipped with a differential structure, then under some other assumptions, these conclusions remain valid without assuming J(E x E - d) 〈 ∞. Some examples are also given in this part. Let At be a local continuous additive functional with zero quadratic variation. In the second part, we get the representation of At and give two sufficient conditions for PAf(x) = Ex[eAtf(Xt)] to be strongly continuous.</description><subject>60J35</subject><subject>60J55</subject><subject>generalized Feynman-Kac semigroup</subject><subject>lower semi-bounded</subject><subject>representation of local continuous additive functional with zero quadratic variation</subject><subject>semi-Dirichlet form</subject><subject>strong continuity</subject><subject>充分条件</subject><subject>半狄氏型</subject><subject>广义</subject><subject>形态</subject><subject>微分结构</subject><subject>转化</subject><subject>连续可加泛函</subject><subject>马尔可夫过程</subject><issn>0252-9602</issn><issn>1572-9087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PhDAQhhujievHTzAhnvSATlso7Mk02HWJCxiKGr00tRTFKKvg57-366pXT9Np3mfemRehHQwHGDA7lEBC4o8ZkD3M9inAeOyzFTTCYeS-IY5W0ehPso42huEeHEdYMEKmyL0TkYuSz9JrcexNxFWe8dw_5YlXlTyXk6LMeJU6mXt5GS9PiwvvrCwSIaWQHpeySFJeOfQyraaeFFnqH6dlmkxnolowmdxCa41-GOz2T91E5xNRJVN_VpykCZ_5huL4xQ_ouGahjWOItA0YMXVoG00MRDVlNGrAEkMarXWIqTaaUBNATOsIjKkhuLF0E-0v577rrtHdrbqfv_adc1TDx_vDx42yxJ0NDDA4bbjUmn4-DL1t1FPfPur-U2FQi1TVd6pqEZly3XeqijnuaMlZd8hba3s1mNZ2xtZtb82LquftvxN2f5zv5t3tc-v2_LVmEUQhAcboFyTBgh8</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>韩新方 马丽</creator><general>Elsevier Ltd</general><general>Department of Mathematics and Statistics, Hainan Normal University, Haikou 571158, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20161101</creationdate><title>ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS</title><author>韩新方 马丽</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-439d65e8807ae462cd5efa2c07d3637f0e2c2faaa513aca23c4083d70ccd04be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>60J35</topic><topic>60J55</topic><topic>generalized Feynman-Kac semigroup</topic><topic>lower semi-bounded</topic><topic>representation of local continuous additive functional with zero quadratic variation</topic><topic>semi-Dirichlet form</topic><topic>strong continuity</topic><topic>充分条件</topic><topic>半狄氏型</topic><topic>广义</topic><topic>形态</topic><topic>微分结构</topic><topic>转化</topic><topic>连续可加泛函</topic><topic>马尔可夫过程</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>韩新方 马丽</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Acta mathematica scientia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>韩新方 马丽</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS</atitle><jtitle>Acta mathematica scientia</jtitle><addtitle>Acta Mathematica Scientia</addtitle><date>2016-11-01</date><risdate>2016</risdate><volume>36</volume><issue>6</issue><spage>1683</spage><epage>1698</epage><pages>1683-1698</pages><issn>0252-9602</issn><eissn>1572-9087</eissn><abstract>Suppose that X is a right process which is associated with a semi-Dirichlet form (ε, D(ε)) on L2(E; m). Let J be the jumping measure of (ε, D(ε)) satisfying J(E x E- d) 〈 ∞. Let u E D(ε)b := D(ε) N L(E; m), we have the following Pukushima's decomposition u(Xt)-u(X0) --- Mut + Nut. Define Pu f(x) = Ex[eNT f(Xt)]. Let Qu(f,g) = ε(f,g)+ε(u, fg) for f, g E D(ε)b. In the first part, under some assumptions we show that (Qu, D(ε)b) is lower semi-bounded if and only if there exists a constant a0 〉 0 such that /Put/2 ≤eaot for every t 〉 0. If one of these assertions holds, then (Put〉0is strongly continuous on L2(E;m). If X is equipped with a differential structure, then under some other assumptions, these conclusions remain valid without assuming J(E x E - d) 〈 ∞. Some examples are also given in this part. Let At be a local continuous additive functional with zero quadratic variation. In the second part, we get the representation of At and give two sufficient conditions for PAf(x) = Ex[eAtf(Xt)] to be strongly continuous.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/S0252-9602(16)30099-6</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0252-9602 |
ispartof | Acta mathematica scientia, 2016-11, Vol.36 (6), p.1683-1698 |
issn | 0252-9602 1572-9087 |
language | eng |
recordid | cdi_wanfang_journals_sxwlxb_e201606010 |
source | ScienceDirect Freedom Collection; Springer Nature |
subjects | 60J35 60J55 generalized Feynman-Kac semigroup lower semi-bounded representation of local continuous additive functional with zero quadratic variation semi-Dirichlet form strong continuity 充分条件 半狄氏型 广义 形态 微分结构 转化 连续可加泛函 马尔可夫过程 |
title | ON GENERALIZED FEYNMAN-KAC TRANSFORMATION FOR MARKOV PROCESSES ASSOCIATED WITH SEMI-DIRICHLET FORMS |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A03%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ON%20GENERALIZED%20FEYNMAN-KAC%20TRANSFORMATION%20FOR%20MARKOV%20PROCESSES%20ASSOCIATED%20WITH%20SEMI-DIRICHLET%20FORMS&rft.jtitle=Acta%20mathematica%20scientia&rft.au=%E9%9F%A9%E6%96%B0%E6%96%B9%20%E9%A9%AC%E4%B8%BD&rft.date=2016-11-01&rft.volume=36&rft.issue=6&rft.spage=1683&rft.epage=1698&rft.pages=1683-1698&rft.issn=0252-9602&rft.eissn=1572-9087&rft_id=info:doi/10.1016/S0252-9602(16)30099-6&rft_dat=%3Cwanfang_jour_cross%3Esxwlxb_e201606010%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c318t-439d65e8807ae462cd5efa2c07d3637f0e2c2faaa513aca23c4083d70ccd04be3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=670752066&rft_wanfj_id=sxwlxb_e201606010&rfr_iscdi=true |