Loading…
Mechanism and performance of a lithium chloride accelerator
To address present concerns about thickening time and high early-strength in deepwater cementing at low temperatures when using conventional accelerators, a new type of set-accelerating admixture comprising of lithium chloride, aluminium hydroxide and alkaline metal chlorides, named as LS-A, was stu...
Saved in:
Published in: | Petroleum science 2011-09, Vol.8 (3), p.328-334 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To address present concerns about thickening time and high early-strength in deepwater cementing at low temperatures when using conventional accelerators, a new type of set-accelerating admixture comprising of lithium chloride, aluminium hydroxide and alkaline metal chlorides, named as LS-A, was studied in this paper. Mechanism analysis and performance tests show that the accelerator LS-A accelerated the hydration of tri- and dicalcium silicates (C3S and C2S) at low-temperatures by speeding up the breakdown of the protective hydration film and shortening the hydration induction period. Therefore, LS-A could shorten the low-temperature thickening time and the transition time of critical gel strength from 48 to 240 Pa of the Class-G cement slurry, and improve the early compressive strength of set cement at low-temperatures. It exhibited better performance than calcium chloride and had no effect on the type of hydration products, which remain the same as those of neat Class-G cement, i.e. the calcium silicate gel, Ca(OH)2 crystals and a small amount of ettringite AFt crystals. LS-A provides an effective way to guarantee the safety of cementing operations, and to solve the problems of low temperature and shallow water/gas flowing faced in deepwater cementing. |
---|---|
ISSN: | 1672-5107 1995-8226 |
DOI: | 10.1007/s12182-011-0149-6 |