Loading…
Design and numerical simulation on coupled flow field of radial turbine with air-inlet volute
As one of the core components of turbocharger or micro-turbine, radial turbine has the features of small size and high rotation speed. In order to explore the design method and flow mechanism of the turbine with a volute, a centimeter-scale radial turbine with a vaneless air-inlet volute was designe...
Saved in:
Published in: | Transactions of Tianjin University 2015-04, Vol.21 (2), p.153-160 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | As one of the core components of turbocharger or micro-turbine, radial turbine has the features of small size and high rotation speed. In order to explore the design method and flow mechanism of the turbine with a volute, a centimeter-scale radial turbine with a vaneless air-inlet volute was designed and simulated numerically to investigate the characteristics of the coupled flow field. The results show that the wheel efficiency of single passage computation without the volute is 80.1%. After accounting for the factors of the loss caused by the volute and the interaction between each passage, the performance is more accurate according to the whole flow passage computation with the volute. High load region gathers at the mid-span and the efficiency declines to 76.6%. The performance of the volute whose structure angle of the trapezoid section is equal to 70 degree is better. Unlike uniform inlet condition in single passage, more appropriate inlet flow for the impeller is provided by the rectification effect of the volute in full passage calculation. Flow parameters are distributed more evenly along the blade span and are generally consistent between each passage at the outlet of the turbine. |
---|---|
ISSN: | 1006-4982 1995-8196 |
DOI: | 10.1007/s12209-015-2403-2 |