Loading…
Concave Minimization for Sparse Solutions of Absolute Value Equations
Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the as...
Saved in:
Published in: | Transactions of Tianjin University 2016-02, Vol.22 (1), p.89-94 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73 |
container_end_page | 94 |
container_issue | 1 |
container_start_page | 89 |
container_title | Transactions of Tianjin University |
container_volume | 22 |
creator | 刘晓红 樊婕 李文娟 |
description | Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm. |
doi_str_mv | 10.1007/s12209-016-2640-z |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_tianjdxxb_e201601014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668341833</cqvip_id><wanfj_id>tianjdxxb_e201601014</wanfj_id><sourcerecordid>tianjdxxb_e201601014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAews1gTGjzj2sqrKQypiUWBrOY5TUrVOGzdQ-vU4pIIdq3nonrmai9AlgRsCkN0GQimoBIhIqOCQ7I_QgCiVJpIocRx7AJFwJekpOgthAcAVZGSAJuPaW_Ph8FPlq1W1N9uq9risGzxbmyY4PKuXbbcLuC7xKA_d6PCbWbYOTzbtjz6co5PSLIO7ONQher2bvIwfkunz_eN4NE0sJYonMpdpWfK0yKwj0uaCQqkKoFYIZmnBmUuZyjiVmcuMUSSD3AqID1glZVFkbIiu-7ufxpfGz_WibhsfHfW2Mn5R7Ha5djSGAAQIj3LSy21Th9C4Uq-bamWaL01Ad7HpPjYdCd3FpveRoT0TotbPXfPn8R90dTB6r_18E7lfJyEk40Qyxr4B4pl7nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Concave Minimization for Sparse Solutions of Absolute Value Equations</title><source>Springer Nature</source><creator>刘晓红 樊婕 李文娟</creator><creatorcontrib>刘晓红 樊婕 李文娟</creatorcontrib><description>Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.</description><identifier>ISSN: 1006-4982</identifier><identifier>EISSN: 1995-8196</identifier><identifier>DOI: 10.1007/s12209-016-2640-z</identifier><language>eng</language><publisher>Tianjin: Tianjin University</publisher><subject>Engineering ; Humanities and Social Sciences ; Mechanical Engineering ; multidisciplinary ; Science ; 凹函数 ; 数值实验 ; 方程 ; 疏解 ; 空间属性 ; 线性规划问题 ; 绝对值 ; 连接矩阵</subject><ispartof>Transactions of Tianjin University, 2016-02, Vol.22 (1), p.89-94</ispartof><rights>Tianjin University and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85460X/85460X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>刘晓红 樊婕 李文娟</creatorcontrib><title>Concave Minimization for Sparse Solutions of Absolute Value Equations</title><title>Transactions of Tianjin University</title><addtitle>Trans. Tianjin Univ</addtitle><addtitle>Transactions of Tianjin University</addtitle><description>Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.</description><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical Engineering</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>凹函数</subject><subject>数值实验</subject><subject>方程</subject><subject>疏解</subject><subject>空间属性</subject><subject>线性规划问题</subject><subject>绝对值</subject><subject>连接矩阵</subject><issn>1006-4982</issn><issn>1995-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAews1gTGjzj2sqrKQypiUWBrOY5TUrVOGzdQ-vU4pIIdq3nonrmai9AlgRsCkN0GQimoBIhIqOCQ7I_QgCiVJpIocRx7AJFwJekpOgthAcAVZGSAJuPaW_Ph8FPlq1W1N9uq9risGzxbmyY4PKuXbbcLuC7xKA_d6PCbWbYOTzbtjz6co5PSLIO7ONQher2bvIwfkunz_eN4NE0sJYonMpdpWfK0yKwj0uaCQqkKoFYIZmnBmUuZyjiVmcuMUSSD3AqID1glZVFkbIiu-7ufxpfGz_WibhsfHfW2Mn5R7Ha5djSGAAQIj3LSy21Th9C4Uq-bamWaL01Ad7HpPjYdCd3FpveRoT0TotbPXfPn8R90dTB6r_18E7lfJyEk40Qyxr4B4pl7nQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>刘晓红 樊婕 李文娟</creator><general>Tianjin University</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160201</creationdate><title>Concave Minimization for Sparse Solutions of Absolute Value Equations</title><author>刘晓红 樊婕 李文娟</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical Engineering</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>凹函数</topic><topic>数值实验</topic><topic>方程</topic><topic>疏解</topic><topic>空间属性</topic><topic>线性规划问题</topic><topic>绝对值</topic><topic>连接矩阵</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>刘晓红 樊婕 李文娟</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Transactions of Tianjin University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘晓红 樊婕 李文娟</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concave Minimization for Sparse Solutions of Absolute Value Equations</atitle><jtitle>Transactions of Tianjin University</jtitle><stitle>Trans. Tianjin Univ</stitle><addtitle>Transactions of Tianjin University</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>22</volume><issue>1</issue><spage>89</spage><epage>94</epage><pages>89-94</pages><issn>1006-4982</issn><eissn>1995-8196</eissn><abstract>Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.</abstract><cop>Tianjin</cop><pub>Tianjin University</pub><doi>10.1007/s12209-016-2640-z</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1006-4982 |
ispartof | Transactions of Tianjin University, 2016-02, Vol.22 (1), p.89-94 |
issn | 1006-4982 1995-8196 |
language | eng |
recordid | cdi_wanfang_journals_tianjdxxb_e201601014 |
source | Springer Nature |
subjects | Engineering Humanities and Social Sciences Mechanical Engineering multidisciplinary Science 凹函数 数值实验 方程 疏解 空间属性 线性规划问题 绝对值 连接矩阵 |
title | Concave Minimization for Sparse Solutions of Absolute Value Equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concave%20Minimization%20for%20Sparse%20Solutions%20of%20Absolute%20Value%20Equations&rft.jtitle=Transactions%20of%20Tianjin%20University&rft.au=%E5%88%98%E6%99%93%E7%BA%A2%20%E6%A8%8A%E5%A9%95%20%E6%9D%8E%E6%96%87%E5%A8%9F&rft.date=2016-02-01&rft.volume=22&rft.issue=1&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.issn=1006-4982&rft.eissn=1995-8196&rft_id=info:doi/10.1007/s12209-016-2640-z&rft_dat=%3Cwanfang_jour_cross%3Etianjdxxb_e201601014%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=668341833&rft_wanfj_id=tianjdxxb_e201601014&rfr_iscdi=true |