Loading…

Concave Minimization for Sparse Solutions of Absolute Value Equations

Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the as...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of Tianjin University 2016-02, Vol.22 (1), p.89-94
Main Author: 刘晓红 樊婕 李文娟
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73
container_end_page 94
container_issue 1
container_start_page 89
container_title Transactions of Tianjin University
container_volume 22
creator 刘晓红 樊婕 李文娟
description Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.
doi_str_mv 10.1007/s12209-016-2640-z
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_tianjdxxb_e201601014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>668341833</cqvip_id><wanfj_id>tianjdxxb_e201601014</wanfj_id><sourcerecordid>tianjdxxb_e201601014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwAews1gTGjzj2sqrKQypiUWBrOY5TUrVOGzdQ-vU4pIIdq3nonrmai9AlgRsCkN0GQimoBIhIqOCQ7I_QgCiVJpIocRx7AJFwJekpOgthAcAVZGSAJuPaW_Ph8FPlq1W1N9uq9risGzxbmyY4PKuXbbcLuC7xKA_d6PCbWbYOTzbtjz6co5PSLIO7ONQher2bvIwfkunz_eN4NE0sJYonMpdpWfK0yKwj0uaCQqkKoFYIZmnBmUuZyjiVmcuMUSSD3AqID1glZVFkbIiu-7ufxpfGz_WibhsfHfW2Mn5R7Ha5djSGAAQIj3LSy21Th9C4Uq-bamWaL01Ad7HpPjYdCd3FpveRoT0TotbPXfPn8R90dTB6r_18E7lfJyEk40Qyxr4B4pl7nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Concave Minimization for Sparse Solutions of Absolute Value Equations</title><source>Springer Nature</source><creator>刘晓红 樊婕 李文娟</creator><creatorcontrib>刘晓红 樊婕 李文娟</creatorcontrib><description>Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.</description><identifier>ISSN: 1006-4982</identifier><identifier>EISSN: 1995-8196</identifier><identifier>DOI: 10.1007/s12209-016-2640-z</identifier><language>eng</language><publisher>Tianjin: Tianjin University</publisher><subject>Engineering ; Humanities and Social Sciences ; Mechanical Engineering ; multidisciplinary ; Science ; 凹函数 ; 数值实验 ; 方程 ; 疏解 ; 空间属性 ; 线性规划问题 ; 绝对值 ; 连接矩阵</subject><ispartof>Transactions of Tianjin University, 2016-02, Vol.22 (1), p.89-94</ispartof><rights>Tianjin University and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85460X/85460X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>刘晓红 樊婕 李文娟</creatorcontrib><title>Concave Minimization for Sparse Solutions of Absolute Value Equations</title><title>Transactions of Tianjin University</title><addtitle>Trans. Tianjin Univ</addtitle><addtitle>Transactions of Tianjin University</addtitle><description>Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.</description><subject>Engineering</subject><subject>Humanities and Social Sciences</subject><subject>Mechanical Engineering</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>凹函数</subject><subject>数值实验</subject><subject>方程</subject><subject>疏解</subject><subject>空间属性</subject><subject>线性规划问题</subject><subject>绝对值</subject><subject>连接矩阵</subject><issn>1006-4982</issn><issn>1995-8196</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwAews1gTGjzj2sqrKQypiUWBrOY5TUrVOGzdQ-vU4pIIdq3nonrmai9AlgRsCkN0GQimoBIhIqOCQ7I_QgCiVJpIocRx7AJFwJekpOgthAcAVZGSAJuPaW_Ph8FPlq1W1N9uq9risGzxbmyY4PKuXbbcLuC7xKA_d6PCbWbYOTzbtjz6co5PSLIO7ONQher2bvIwfkunz_eN4NE0sJYonMpdpWfK0yKwj0uaCQqkKoFYIZmnBmUuZyjiVmcuMUSSD3AqID1glZVFkbIiu-7ufxpfGz_WibhsfHfW2Mn5R7Ha5djSGAAQIj3LSy21Th9C4Uq-bamWaL01Ad7HpPjYdCd3FpveRoT0TotbPXfPn8R90dTB6r_18E7lfJyEk40Qyxr4B4pl7nQ</recordid><startdate>20160201</startdate><enddate>20160201</enddate><creator>刘晓红 樊婕 李文娟</creator><general>Tianjin University</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160201</creationdate><title>Concave Minimization for Sparse Solutions of Absolute Value Equations</title><author>刘晓红 樊婕 李文娟</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Engineering</topic><topic>Humanities and Social Sciences</topic><topic>Mechanical Engineering</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>凹函数</topic><topic>数值实验</topic><topic>方程</topic><topic>疏解</topic><topic>空间属性</topic><topic>线性规划问题</topic><topic>绝对值</topic><topic>连接矩阵</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>刘晓红 樊婕 李文娟</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Transactions of Tianjin University</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>刘晓红 樊婕 李文娟</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Concave Minimization for Sparse Solutions of Absolute Value Equations</atitle><jtitle>Transactions of Tianjin University</jtitle><stitle>Trans. Tianjin Univ</stitle><addtitle>Transactions of Tianjin University</addtitle><date>2016-02-01</date><risdate>2016</risdate><volume>22</volume><issue>1</issue><spage>89</spage><epage>94</epage><pages>89-94</pages><issn>1006-4982</issn><eissn>1995-8196</eissn><abstract>Based on concave function, the problem of finding the sparse solution of absolute value equations is relaxed to a concave programming, and its corresponding algorithm is proposed, whose main part is solving a series of linear programming. It is proved that a sparse solution can be found under the assumption that the connected matrixes have range space property(RSP). Numerical experiments are also conducted to verify the efficiency of the proposed algorithm.</abstract><cop>Tianjin</cop><pub>Tianjin University</pub><doi>10.1007/s12209-016-2640-z</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1006-4982
ispartof Transactions of Tianjin University, 2016-02, Vol.22 (1), p.89-94
issn 1006-4982
1995-8196
language eng
recordid cdi_wanfang_journals_tianjdxxb_e201601014
source Springer Nature
subjects Engineering
Humanities and Social Sciences
Mechanical Engineering
multidisciplinary
Science
凹函数
数值实验
方程
疏解
空间属性
线性规划问题
绝对值
连接矩阵
title Concave Minimization for Sparse Solutions of Absolute Value Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A03%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Concave%20Minimization%20for%20Sparse%20Solutions%20of%20Absolute%20Value%20Equations&rft.jtitle=Transactions%20of%20Tianjin%20University&rft.au=%E5%88%98%E6%99%93%E7%BA%A2%20%E6%A8%8A%E5%A9%95%20%E6%9D%8E%E6%96%87%E5%A8%9F&rft.date=2016-02-01&rft.volume=22&rft.issue=1&rft.spage=89&rft.epage=94&rft.pages=89-94&rft.issn=1006-4982&rft.eissn=1995-8196&rft_id=info:doi/10.1007/s12209-016-2640-z&rft_dat=%3Cwanfang_jour_cross%3Etianjdxxb_e201601014%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2194-8b85ff45d7ce18cb620f9d02c663c2d43e53974287e7aa9170bc60196c988dd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_cqvip_id=668341833&rft_wanfj_id=tianjdxxb_e201601014&rfr_iscdi=true