Loading…

Equilibrium of Organic Matter in Heavy Fraction for Three Long-term Experimental Field Soils in China

Considerable evidence that the soil organic matter (OM) level in agricultural soils will gradually over time reach an equilibrium state under certain bioclimatic conditions and for certain cropping systems has been accumulating. Although models or long-term experiments have been used, this research...

Full description

Saved in:
Bibliographic Details
Published in:Pedosphere 2006-04, Vol.16 (2), p.177-184
Main Authors: YIN, Yun-Feng, CAI, Zu-Cong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Considerable evidence that the soil organic matter (OM) level in agricultural soils will gradually over time reach an equilibrium state under certain bioclimatic conditions and for certain cropping systems has been accumulating. Although models or long-term experiments have been used, this research used physical fractionation procedure to attain an soil OM equilibrium value. To obtain soil OM equilibrium values in the heavy fraction, typical soils from three long-term field experiments at Fengqiu and Yingtan State Key Agro-Ecological Experimental Stations in China were studied using a simple density fractionation procedure and employing the Langmuir equation. Results for the fluvo-aquic soil with organic fertilizer treatments indicated that the soil OM equilibrium value in the heavy fraction was twofold more than that in the inorganic treatments; however, for the paddy soil developed on red soil the OM equilibrium value in the heavy fraction for both treatments was almost identical. It suggested that for fiuvo-aquic soils the increased potential of OM for the heavy fraction in the long run was larger for the organic than the inorganic fertilizer applications, whereas for paddy soils developed on red soils under the same conditions the present OM content in the heavy fraction was at or close to this equilibrium level for all treatments, and increased potential was very limited.
ISSN:1002-0160
2210-5107
DOI:10.1016/S1002-0160(06)60041-6