Loading…

Temporal and Tissue-Specific Expression of Tomato 14-3-3 Gene Family in Response to Phosphorus Deficiency

Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved. Tomato (Solanum lycopersicum L. 'Hezuo906') plants were selected to grown hydroponically to study the temporal and spatial gene expression patterns of the 14-3-3 gene family and their rol...

Full description

Saved in:
Bibliographic Details
Published in:Pedosphere 2012-12, Vol.22 (6), p.735-745
Main Authors: XU, Wei-Feng, SHI, Wei-Ming, YAN, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Plants adapt to phosphorus (P) deficiency through a complex of biological processes and many genes are involved. Tomato (Solanum lycopersicum L. 'Hezuo906') plants were selected to grown hydroponically to study the temporal and spatial gene expression patterns of the 14-3-3 gene family and their roles in response to P deficiency in tomato plants. Using real-time reverse-transcriptase polymerase chain reaction (RT-PCR), we investigated the expression profiles in different tissues (root, stem and leaf) at short-term and long-term P-deficient stress phases. Results revealed that i) four members of 14-3-3 gene family (TFT1, TFT4, TFT6 and TFTT) were involved in the adaptation of tomato plants to P deficiency, ii) TFT7 responded quickly to P deficiency in the root, while TFT6 responded slowly to P deficiency in the leaf, iii) expression response of TFT4 to P-deficient stress was widely distributed in different tissues (root, stem and leaf) while TFT8 only displayed stem-specific expression, and iv) temporal and tissues-specific expression patterns to P deficiency suggested that isoform specificity existed in tomato 14-3-3 gene family. We propose that TFT7 (one member of e-like group in tomato 14-3-3 family) is the early responsive gene and may play a role in the adaptation of tomato plants to shortterm P deficiency, while TFT6 (one member of non-e group in tomato 14-3-3 family) is the later responsive gene and may play a role in the adaptation of tomato plants to long-term P deficiency.
ISSN:1002-0160
2210-5107
DOI:10.1016/S1002-0160(12)60059-9