Loading…
Multi-label dimensionality reduction and classification with extreme learning machines
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dime...
Saved in:
Published in: | Journal of systems engineering and electronics 2014-06, Vol.25 (3), p.502-513 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c411t-58c9f933d4bf8f97d417b0e6f5306463c295f2bb4f73cc720b4f8c09592247213 |
---|---|
cites | |
container_end_page | 513 |
container_issue | 3 |
container_start_page | 502 |
container_title | Journal of systems engineering and electronics |
container_volume | 25 |
creator | Feng, Lin Wang, Jing Liu, Shenglan Xiao, Yao |
description | In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification. |
doi_str_mv | 10.1109/JSEE.2014.00058 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xtgcydzjs_e201403018</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>50295553</cqvip_id><wanfj_id>xtgcydzjs_e201403018</wanfj_id><sourcerecordid>xtgcydzjs_e201403018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-58c9f933d4bf8f97d417b0e6f5306463c295f2bb4f73cc720b4f8c09592247213</originalsourceid><addsrcrecordid>eNqNkb1v2zAQxYWiBWIkmbOqW4fKOX6J4lgY7keQIEOarARFkTYNirJJCYn715eKgyJjufCO-L2H472iuEKwRAjE9c3Der3EgOgSAFjzoVggAFpRRPDHd_VZcZnSDubDAWNYFE93kx9d5VVrfNm53oTkhqC8G49lNN2kx9yWKnSl9iolZ51Wr0_PbtyW5mWMpjelNyoGFzZlr_TWBZMuik9W-WQu3-7z4vH7-vfqZ3V7_-PX6tttpSlCY8UaLawgpKOtbazgHUW8BVNbRqCmNdFYMIvbllpOtOYYctVoEExgTDlG5Lz4evJ9VsGqsJG7YYp5_CRfxo0-dn92SZp5L0AANRn_csL3cThMJo2yd0kb71Uww5QkqjkX2Vv8B8pqDjx7soxen1Adh5SisXIfXa_iUSKQczxyjkfOY8jXeLLi85tiO4TNIW_un4RB_jNjhPwFhBeNRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1567071835</pqid></control><display><type>article</type><title>Multi-label dimensionality reduction and classification with extreme learning machines</title><source>IEEE Xplore All Journals</source><creator>Feng, Lin ; Wang, Jing ; Liu, Shenglan ; Xiao, Yao</creator><creatorcontrib>Feng, Lin ; Wang, Jing ; Liu, Shenglan ; Xiao, Yao</creatorcontrib><description>In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.</description><identifier>ISSN: 1004-4132</identifier><identifier>EISSN: 1004-4132</identifier><identifier>DOI: 10.1109/JSEE.2014.00058</identifier><language>eng</language><publisher>Faculty of Electronic Information and Electrical Engineering, School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China</publisher><subject>Algorithms ; Classification ; Discriminant analysis ; Elm ; Kernels ; Learning ; Maximization ; Neural networks ; Reduction ; 分类算法 ; 图像分类 ; 学习机 ; 数据集 ; 文本分类 ; 标签 ; 线性判别分析 ; 降维算法</subject><ispartof>Journal of systems engineering and electronics, 2014-06, Vol.25 (3), p.502-513</ispartof><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-58c9f933d4bf8f97d417b0e6f5306463c295f2bb4f73cc720b4f8c09592247213</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85918X/85918X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Feng, Lin</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Liu, Shenglan</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><title>Multi-label dimensionality reduction and classification with extreme learning machines</title><title>Journal of systems engineering and electronics</title><addtitle>Journal of Systems Engineering and Electronics</addtitle><description>In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.</description><subject>Algorithms</subject><subject>Classification</subject><subject>Discriminant analysis</subject><subject>Elm</subject><subject>Kernels</subject><subject>Learning</subject><subject>Maximization</subject><subject>Neural networks</subject><subject>Reduction</subject><subject>分类算法</subject><subject>图像分类</subject><subject>学习机</subject><subject>数据集</subject><subject>文本分类</subject><subject>标签</subject><subject>线性判别分析</subject><subject>降维算法</subject><issn>1004-4132</issn><issn>1004-4132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkb1v2zAQxYWiBWIkmbOqW4fKOX6J4lgY7keQIEOarARFkTYNirJJCYn715eKgyJjufCO-L2H472iuEKwRAjE9c3Der3EgOgSAFjzoVggAFpRRPDHd_VZcZnSDubDAWNYFE93kx9d5VVrfNm53oTkhqC8G49lNN2kx9yWKnSl9iolZ51Wr0_PbtyW5mWMpjelNyoGFzZlr_TWBZMuik9W-WQu3-7z4vH7-vfqZ3V7_-PX6tttpSlCY8UaLawgpKOtbazgHUW8BVNbRqCmNdFYMIvbllpOtOYYctVoEExgTDlG5Lz4evJ9VsGqsJG7YYp5_CRfxo0-dn92SZp5L0AANRn_csL3cThMJo2yd0kb71Uww5QkqjkX2Vv8B8pqDjx7soxen1Adh5SisXIfXa_iUSKQczxyjkfOY8jXeLLi85tiO4TNIW_un4RB_jNjhPwFhBeNRg</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Feng, Lin</creator><creator>Wang, Jing</creator><creator>Liu, Shenglan</creator><creator>Xiao, Yao</creator><general>Faculty of Electronic Information and Electrical Engineering, School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20140601</creationdate><title>Multi-label dimensionality reduction and classification with extreme learning machines</title><author>Feng, Lin ; Wang, Jing ; Liu, Shenglan ; Xiao, Yao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-58c9f933d4bf8f97d417b0e6f5306463c295f2bb4f73cc720b4f8c09592247213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Classification</topic><topic>Discriminant analysis</topic><topic>Elm</topic><topic>Kernels</topic><topic>Learning</topic><topic>Maximization</topic><topic>Neural networks</topic><topic>Reduction</topic><topic>分类算法</topic><topic>图像分类</topic><topic>学习机</topic><topic>数据集</topic><topic>文本分类</topic><topic>标签</topic><topic>线性判别分析</topic><topic>降维算法</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Feng, Lin</creatorcontrib><creatorcontrib>Wang, Jing</creatorcontrib><creatorcontrib>Liu, Shenglan</creatorcontrib><creatorcontrib>Xiao, Yao</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Journal of systems engineering and electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Feng, Lin</au><au>Wang, Jing</au><au>Liu, Shenglan</au><au>Xiao, Yao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-label dimensionality reduction and classification with extreme learning machines</atitle><jtitle>Journal of systems engineering and electronics</jtitle><addtitle>Journal of Systems Engineering and Electronics</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>25</volume><issue>3</issue><spage>502</spage><epage>513</epage><pages>502-513</pages><issn>1004-4132</issn><eissn>1004-4132</eissn><abstract>In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification.</abstract><pub>Faculty of Electronic Information and Electrical Engineering, School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China</pub><doi>10.1109/JSEE.2014.00058</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1004-4132 |
ispartof | Journal of systems engineering and electronics, 2014-06, Vol.25 (3), p.502-513 |
issn | 1004-4132 1004-4132 |
language | eng |
recordid | cdi_wanfang_journals_xtgcydzjs_e201403018 |
source | IEEE Xplore All Journals |
subjects | Algorithms Classification Discriminant analysis Elm Kernels Learning Maximization Neural networks Reduction 分类算法 图像分类 学习机 数据集 文本分类 标签 线性判别分析 降维算法 |
title | Multi-label dimensionality reduction and classification with extreme learning machines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A01%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-label%20dimensionality%20reduction%20and%20classification%20with%20extreme%20learning%20machines&rft.jtitle=Journal%20of%20systems%20engineering%20and%20electronics&rft.au=Feng,%20Lin&rft.date=2014-06-01&rft.volume=25&rft.issue=3&rft.spage=502&rft.epage=513&rft.pages=502-513&rft.issn=1004-4132&rft.eissn=1004-4132&rft_id=info:doi/10.1109/JSEE.2014.00058&rft_dat=%3Cwanfang_jour_proqu%3Extgcydzjs_e201403018%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-58c9f933d4bf8f97d417b0e6f5306463c295f2bb4f73cc720b4f8c09592247213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1567071835&rft_id=info:pmid/&rft_cqvip_id=50295553&rft_wanfj_id=xtgcydzjs_e201403018&rfr_iscdi=true |