Loading…

Precipitation process and its effects on properties of aging Cu-Ni-Be alloy

The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2013-08, Vol.32 (4), p.332-337
Main Authors: Peng, Li-Jun, Xiong, Bai-Qing, Xie, Guo-Liang, Wang, Qiang-Song, Hong, Song-Bai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.
ISSN:1001-0521
1867-7185
DOI:10.1007/s12598-013-0074-5