Loading…
Precipitation process and its effects on properties of aging Cu-Ni-Be alloy
The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also...
Saved in:
Published in: | Rare metals 2013-08, Vol.32 (4), p.332-337 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23 |
---|---|
cites | cdi_FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23 |
container_end_page | 337 |
container_issue | 4 |
container_start_page | 332 |
container_title | Rare metals |
container_volume | 32 |
creator | Peng, Li-Jun Xiong, Bai-Qing Xie, Guo-Liang Wang, Qiang-Song Hong, Song-Bai |
description | The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data. |
doi_str_mv | 10.1007/s12598-013-0074-5 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xyjs_e201304002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47078486</cqvip_id><wanfj_id>xyjs_e201304002</wanfj_id><sourcerecordid>xyjs_e201304002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEqXwA7gFcYCL6Yw_kyOs-FKrlgOcLcc7Dl6lztbOCvbf41WqCnHgNB7N88478ts0LxHeIYC5KMhV3zFAwWormXrUnGGnDTPYqcf1DYAMFMenzbNSdgBSag1nzeW3TD7u4-KWOKd2n2dPpbQubdu4lJZCIF_rOtpTXiLVLrRujGlsNwd2HdkHat00zcfnzZPgpkIv7ut58-PTx--bL-zq5vPXzfsr5iWYhSmPaAjB6H5ruBioH5wfOrcNSpPQPlDgYPgQQDkwIHTHlZRbQiG4MQMX582bde8vl4JLo93Nh5yqo_193BVLvP4CSIAT-XYl6_F3ByqLvY3F0zS5RPOhWJSyM7Lvuajo63_Qh60ohUGjlZKVwpXyeS4lU7D7HG9dPloEewrCrkHYeoI9BWFV1fBVUyqbRsp_bf6P6NW90c85jXdV9-AkDZhOdlr8AaBuk-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437176554</pqid></control><display><type>article</type><title>Precipitation process and its effects on properties of aging Cu-Ni-Be alloy</title><source>Springer Nature</source><creator>Peng, Li-Jun ; Xiong, Bai-Qing ; Xie, Guo-Liang ; Wang, Qiang-Song ; Hong, Song-Bai</creator><creatorcontrib>Peng, Li-Jun ; Xiong, Bai-Qing ; Xie, Guo-Liang ; Wang, Qiang-Song ; Hong, Song-Bai</creatorcontrib><description>The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-013-0074-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>AGING MECHANISMS ; Biomaterials ; Chemistry and Materials Science ; COPPER ALLOYS (40 TO 99.3 CU) ; Copper base alloys ; ELECTRICAL CONDUCTIVITY ; Electron microscopy ; Energy ; HRTEM ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoscale Science and Technology ; PHASE TRANSFORMATIONS ; Physical Chemistry ; PRECIPITATES ; Precipitation ; Strengthening ; Tensile strength ; Transformations ; X-射线衍射 ; YIELD STRENGTH ; 合金 ; 方向关系矩阵 ; 沉淀过程 ; 老化性能 ; 降水过程 ; 高分辨透射电子显微镜</subject><ispartof>Rare metals, 2013-08, Vol.32 (4), p.332-337</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23</citedby><cites>FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85314X/85314X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Peng, Li-Jun</creatorcontrib><creatorcontrib>Xiong, Bai-Qing</creatorcontrib><creatorcontrib>Xie, Guo-Liang</creatorcontrib><creatorcontrib>Wang, Qiang-Song</creatorcontrib><creatorcontrib>Hong, Song-Bai</creatorcontrib><title>Precipitation process and its effects on properties of aging Cu-Ni-Be alloy</title><title>Rare metals</title><addtitle>Rare Met</addtitle><addtitle>Rare Metals</addtitle><description>The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.</description><subject>AGING MECHANISMS</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>Copper base alloys</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electron microscopy</subject><subject>Energy</subject><subject>HRTEM</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physical Chemistry</subject><subject>PRECIPITATES</subject><subject>Precipitation</subject><subject>Strengthening</subject><subject>Tensile strength</subject><subject>Transformations</subject><subject>X-射线衍射</subject><subject>YIELD STRENGTH</subject><subject>合金</subject><subject>方向关系矩阵</subject><subject>沉淀过程</subject><subject>老化性能</subject><subject>降水过程</subject><subject>高分辨透射电子显微镜</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEEqXwA7gFcYCL6Yw_kyOs-FKrlgOcLcc7Dl6lztbOCvbf41WqCnHgNB7N88478ts0LxHeIYC5KMhV3zFAwWormXrUnGGnDTPYqcf1DYAMFMenzbNSdgBSag1nzeW3TD7u4-KWOKd2n2dPpbQubdu4lJZCIF_rOtpTXiLVLrRujGlsNwd2HdkHat00zcfnzZPgpkIv7ut58-PTx--bL-zq5vPXzfsr5iWYhSmPaAjB6H5ruBioH5wfOrcNSpPQPlDgYPgQQDkwIHTHlZRbQiG4MQMX582bde8vl4JLo93Nh5yqo_193BVLvP4CSIAT-XYl6_F3ByqLvY3F0zS5RPOhWJSyM7Lvuajo63_Qh60ohUGjlZKVwpXyeS4lU7D7HG9dPloEewrCrkHYeoI9BWFV1fBVUyqbRsp_bf6P6NW90c85jXdV9-AkDZhOdlr8AaBuk-M</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Peng, Li-Jun</creator><creator>Xiong, Bai-Qing</creator><creator>Xie, Guo-Liang</creator><creator>Wang, Qiang-Song</creator><creator>Hong, Song-Bai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>State Key Laboratory of Nonferrous Metals & Process,General Research Institute for Nonferrous Metals,Beijing 100088, China%Yingtan Shine Electric Metal Material Co., Ltd,Yingtan 335000, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>H8G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20130801</creationdate><title>Precipitation process and its effects on properties of aging Cu-Ni-Be alloy</title><author>Peng, Li-Jun ; Xiong, Bai-Qing ; Xie, Guo-Liang ; Wang, Qiang-Song ; Hong, Song-Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AGING MECHANISMS</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>Copper base alloys</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electron microscopy</topic><topic>Energy</topic><topic>HRTEM</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physical Chemistry</topic><topic>PRECIPITATES</topic><topic>Precipitation</topic><topic>Strengthening</topic><topic>Tensile strength</topic><topic>Transformations</topic><topic>X-射线衍射</topic><topic>YIELD STRENGTH</topic><topic>合金</topic><topic>方向关系矩阵</topic><topic>沉淀过程</topic><topic>老化性能</topic><topic>降水过程</topic><topic>高分辨透射电子显微镜</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Li-Jun</creatorcontrib><creatorcontrib>Xiong, Bai-Qing</creatorcontrib><creatorcontrib>Xie, Guo-Liang</creatorcontrib><creatorcontrib>Wang, Qiang-Song</creatorcontrib><creatorcontrib>Hong, Song-Bai</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Copper Technical Reference Library</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Li-Jun</au><au>Xiong, Bai-Qing</au><au>Xie, Guo-Liang</au><au>Wang, Qiang-Song</au><au>Hong, Song-Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation process and its effects on properties of aging Cu-Ni-Be alloy</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><addtitle>Rare Metals</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>32</volume><issue>4</issue><spage>332</spage><epage>337</epage><pages>332-337</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12598-013-0074-5</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2013-08, Vol.32 (4), p.332-337 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_wanfang_journals_xyjs_e201304002 |
source | Springer Nature |
subjects | AGING MECHANISMS Biomaterials Chemistry and Materials Science COPPER ALLOYS (40 TO 99.3 CU) Copper base alloys ELECTRICAL CONDUCTIVITY Electron microscopy Energy HRTEM Materials Engineering Materials Science Metallic Materials Nanoscale Science and Technology PHASE TRANSFORMATIONS Physical Chemistry PRECIPITATES Precipitation Strengthening Tensile strength Transformations X-射线衍射 YIELD STRENGTH 合金 方向关系矩阵 沉淀过程 老化性能 降水过程 高分辨透射电子显微镜 |
title | Precipitation process and its effects on properties of aging Cu-Ni-Be alloy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20process%20and%20its%20effects%20on%20properties%20of%20aging%20Cu-Ni-Be%20alloy&rft.jtitle=Rare%20metals&rft.au=Peng,%20Li-Jun&rft.date=2013-08-01&rft.volume=32&rft.issue=4&rft.spage=332&rft.epage=337&rft.pages=332-337&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-013-0074-5&rft_dat=%3Cwanfang_jour_proqu%3Exyjs_e201304002%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437176554&rft_id=info:pmid/&rft_cqvip_id=47078486&rft_wanfj_id=xyjs_e201304002&rfr_iscdi=true |