Loading…

Precipitation process and its effects on properties of aging Cu-Ni-Be alloy

The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2013-08, Vol.32 (4), p.332-337
Main Authors: Peng, Li-Jun, Xiong, Bai-Qing, Xie, Guo-Liang, Wang, Qiang-Song, Hong, Song-Bai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23
cites cdi_FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23
container_end_page 337
container_issue 4
container_start_page 332
container_title Rare metals
container_volume 32
creator Peng, Li-Jun
Xiong, Bai-Qing
Xie, Guo-Liang
Wang, Qiang-Song
Hong, Song-Bai
description The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.
doi_str_mv 10.1007/s12598-013-0074-5
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xyjs_e201304002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>47078486</cqvip_id><wanfj_id>xyjs_e201304002</wanfj_id><sourcerecordid>xyjs_e201304002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhiMEEqXwA7gFcYCL6Yw_kyOs-FKrlgOcLcc7Dl6lztbOCvbf41WqCnHgNB7N88478ts0LxHeIYC5KMhV3zFAwWormXrUnGGnDTPYqcf1DYAMFMenzbNSdgBSag1nzeW3TD7u4-KWOKd2n2dPpbQubdu4lJZCIF_rOtpTXiLVLrRujGlsNwd2HdkHat00zcfnzZPgpkIv7ut58-PTx--bL-zq5vPXzfsr5iWYhSmPaAjB6H5ruBioH5wfOrcNSpPQPlDgYPgQQDkwIHTHlZRbQiG4MQMX582bde8vl4JLo93Nh5yqo_193BVLvP4CSIAT-XYl6_F3ByqLvY3F0zS5RPOhWJSyM7Lvuajo63_Qh60ohUGjlZKVwpXyeS4lU7D7HG9dPloEewrCrkHYeoI9BWFV1fBVUyqbRsp_bf6P6NW90c85jXdV9-AkDZhOdlr8AaBuk-M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1437176554</pqid></control><display><type>article</type><title>Precipitation process and its effects on properties of aging Cu-Ni-Be alloy</title><source>Springer Nature</source><creator>Peng, Li-Jun ; Xiong, Bai-Qing ; Xie, Guo-Liang ; Wang, Qiang-Song ; Hong, Song-Bai</creator><creatorcontrib>Peng, Li-Jun ; Xiong, Bai-Qing ; Xie, Guo-Liang ; Wang, Qiang-Song ; Hong, Song-Bai</creatorcontrib><description>The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-013-0074-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>AGING MECHANISMS ; Biomaterials ; Chemistry and Materials Science ; COPPER ALLOYS (40 TO 99.3 CU) ; Copper base alloys ; ELECTRICAL CONDUCTIVITY ; Electron microscopy ; Energy ; HRTEM ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoscale Science and Technology ; PHASE TRANSFORMATIONS ; Physical Chemistry ; PRECIPITATES ; Precipitation ; Strengthening ; Tensile strength ; Transformations ; X-射线衍射 ; YIELD STRENGTH ; 合金 ; 方向关系矩阵 ; 沉淀过程 ; 老化性能 ; 降水过程 ; 高分辨透射电子显微镜</subject><ispartof>Rare metals, 2013-08, Vol.32 (4), p.332-337</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23</citedby><cites>FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85314X/85314X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Peng, Li-Jun</creatorcontrib><creatorcontrib>Xiong, Bai-Qing</creatorcontrib><creatorcontrib>Xie, Guo-Liang</creatorcontrib><creatorcontrib>Wang, Qiang-Song</creatorcontrib><creatorcontrib>Hong, Song-Bai</creatorcontrib><title>Precipitation process and its effects on properties of aging Cu-Ni-Be alloy</title><title>Rare metals</title><addtitle>Rare Met</addtitle><addtitle>Rare Metals</addtitle><description>The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.</description><subject>AGING MECHANISMS</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>COPPER ALLOYS (40 TO 99.3 CU)</subject><subject>Copper base alloys</subject><subject>ELECTRICAL CONDUCTIVITY</subject><subject>Electron microscopy</subject><subject>Energy</subject><subject>HRTEM</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>PHASE TRANSFORMATIONS</subject><subject>Physical Chemistry</subject><subject>PRECIPITATES</subject><subject>Precipitation</subject><subject>Strengthening</subject><subject>Tensile strength</subject><subject>Transformations</subject><subject>X-射线衍射</subject><subject>YIELD STRENGTH</subject><subject>合金</subject><subject>方向关系矩阵</subject><subject>沉淀过程</subject><subject>老化性能</subject><subject>降水过程</subject><subject>高分辨透射电子显微镜</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhiMEEqXwA7gFcYCL6Yw_kyOs-FKrlgOcLcc7Dl6lztbOCvbf41WqCnHgNB7N88478ts0LxHeIYC5KMhV3zFAwWormXrUnGGnDTPYqcf1DYAMFMenzbNSdgBSag1nzeW3TD7u4-KWOKd2n2dPpbQubdu4lJZCIF_rOtpTXiLVLrRujGlsNwd2HdkHat00zcfnzZPgpkIv7ut58-PTx--bL-zq5vPXzfsr5iWYhSmPaAjB6H5ruBioH5wfOrcNSpPQPlDgYPgQQDkwIHTHlZRbQiG4MQMX582bde8vl4JLo93Nh5yqo_193BVLvP4CSIAT-XYl6_F3ByqLvY3F0zS5RPOhWJSyM7Lvuajo63_Qh60ohUGjlZKVwpXyeS4lU7D7HG9dPloEewrCrkHYeoI9BWFV1fBVUyqbRsp_bf6P6NW90c85jXdV9-AkDZhOdlr8AaBuk-M</recordid><startdate>20130801</startdate><enddate>20130801</enddate><creator>Peng, Li-Jun</creator><creator>Xiong, Bai-Qing</creator><creator>Xie, Guo-Liang</creator><creator>Wang, Qiang-Song</creator><creator>Hong, Song-Bai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>State Key Laboratory of Nonferrous Metals &amp; Process,General Research Institute for Nonferrous Metals,Beijing 100088, China%Yingtan Shine Electric Metal Material Co., Ltd,Yingtan 335000, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>H8G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20130801</creationdate><title>Precipitation process and its effects on properties of aging Cu-Ni-Be alloy</title><author>Peng, Li-Jun ; Xiong, Bai-Qing ; Xie, Guo-Liang ; Wang, Qiang-Song ; Hong, Song-Bai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>AGING MECHANISMS</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>COPPER ALLOYS (40 TO 99.3 CU)</topic><topic>Copper base alloys</topic><topic>ELECTRICAL CONDUCTIVITY</topic><topic>Electron microscopy</topic><topic>Energy</topic><topic>HRTEM</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>PHASE TRANSFORMATIONS</topic><topic>Physical Chemistry</topic><topic>PRECIPITATES</topic><topic>Precipitation</topic><topic>Strengthening</topic><topic>Tensile strength</topic><topic>Transformations</topic><topic>X-射线衍射</topic><topic>YIELD STRENGTH</topic><topic>合金</topic><topic>方向关系矩阵</topic><topic>沉淀过程</topic><topic>老化性能</topic><topic>降水过程</topic><topic>高分辨透射电子显微镜</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Peng, Li-Jun</creatorcontrib><creatorcontrib>Xiong, Bai-Qing</creatorcontrib><creatorcontrib>Xie, Guo-Liang</creatorcontrib><creatorcontrib>Wang, Qiang-Song</creatorcontrib><creatorcontrib>Hong, Song-Bai</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Copper Technical Reference Library</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Peng, Li-Jun</au><au>Xiong, Bai-Qing</au><au>Xie, Guo-Liang</au><au>Wang, Qiang-Song</au><au>Hong, Song-Bai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Precipitation process and its effects on properties of aging Cu-Ni-Be alloy</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><addtitle>Rare Metals</addtitle><date>2013-08-01</date><risdate>2013</risdate><volume>32</volume><issue>4</issue><spage>332</spage><epage>337</epage><pages>332-337</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The precipitation process of aged Cu-Ni-Be alloy was investigated by X-ray diffraction (XRD), trans- mission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The tensile strength, yield strength, and electronic conductivity of this alloy after aging were also studied. The precipitation sequence of the C17510 alloy aged at 525 ℃ is supersat-urated solid solution→G.P zones→ γ″-γ′→ γ. This transformation can be achieved by the accumulation of Be-atom layers. The G.P zones are composed of disk-shaped monolayers of Be atoms, which are formed on (001) matrix planes. The intermediate γ″ precipitate is nucleated in the G.P zones. The γ″ and γ′ precipitates have the same orientation relationship with matrix, e.g., (110)p||(100)M,[001]p||[001]M. The tensile strength of specimen shows a maximum during the aging process and then continuously decreases if the specimen is over aged. The strengthening effect of γ′ phase precipitated in aging at 525 ℃ for 4 h is calculated to be 436 MPa according to the Orowan strengthening, which is quite consistent with the experimental data.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12598-013-0074-5</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2013-08, Vol.32 (4), p.332-337
issn 1001-0521
1867-7185
language eng
recordid cdi_wanfang_journals_xyjs_e201304002
source Springer Nature
subjects AGING MECHANISMS
Biomaterials
Chemistry and Materials Science
COPPER ALLOYS (40 TO 99.3 CU)
Copper base alloys
ELECTRICAL CONDUCTIVITY
Electron microscopy
Energy
HRTEM
Materials Engineering
Materials Science
Metallic Materials
Nanoscale Science and Technology
PHASE TRANSFORMATIONS
Physical Chemistry
PRECIPITATES
Precipitation
Strengthening
Tensile strength
Transformations
X-射线衍射
YIELD STRENGTH
合金
方向关系矩阵
沉淀过程
老化性能
降水过程
高分辨透射电子显微镜
title Precipitation process and its effects on properties of aging Cu-Ni-Be alloy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T06%3A09%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Precipitation%20process%20and%20its%20effects%20on%20properties%20of%20aging%20Cu-Ni-Be%20alloy&rft.jtitle=Rare%20metals&rft.au=Peng,%20Li-Jun&rft.date=2013-08-01&rft.volume=32&rft.issue=4&rft.spage=332&rft.epage=337&rft.pages=332-337&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-013-0074-5&rft_dat=%3Cwanfang_jour_proqu%3Exyjs_e201304002%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c407t-5c117e10769d723be9bacb8adf56e36cfef2072bf05a0703682544de133277b23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1437176554&rft_id=info:pmid/&rft_cqvip_id=47078486&rft_wanfj_id=xyjs_e201304002&rfr_iscdi=true