Loading…

Application of vacuum distillation in refining crude indium

Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure fo...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2013-12, Vol.32 (6), p.627-631
Main Authors: Jiang, Wen-Long, Deng, Yong, Yang, Bin, Liu, Da-Chun, Dai, Yong-Nian, Xu, Bao-Qiang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93
cites cdi_FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93
container_end_page 631
container_issue 6
container_start_page 627
container_title Rare metals
container_volume 32
creator Jiang, Wen-Long
Deng, Yong
Yang, Bin
Liu, Da-Chun
Dai, Yong-Nian
Xu, Bao-Qiang
description Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation, which could approximately predict the temperature and pressure during vacuum distillation process. Second, the activity coefficients for In–Cd, In–Zn, In–Pb, In–Tl at 1373 K, and In–Sn at 1573 K were acquired by means of molecular interaction on volume model. Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients. These diagrams could estimate the compositions of products in each process during the refinement of crude indium. Finally, 1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out, and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams.
doi_str_mv 10.1007/s12598-013-0169-z
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xyjs_e201306017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xyjs_e201306017</wanfj_id><sourcerecordid>xyjs_e201306017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8FD3qpTtImafC0LP6DBS97D2maLFnatDatuvvpzVIRETyECcPvvZl5CF1iuMUA_C5gQkWRAs7iYyLdH6EZLhhPOS7ocfwD4BQowafoLIQtQJ4zBjN0v-i62mk1uNYnrU3elR7HJqlcGFxdT23nk95Y553fJLofKxM7lRubc3RiVR3MxXedo_Xjw3r5nK5en16Wi1WqswIPaUkqYvLSWFsSxlklDCUVgGZG4JxyXVJrjCpLAZkSSliKeUZ0YTjJeVGKbI6uJ9sP5a3yG7ltx97HgfJztw3SkHg0MIiqObqZyK5v30YTBtm4oE28w5t2DBLnIs_iTMoievUH_XHFOcdAGecHCk-U7tsQYgiy612j-p3EIA-5yyl3GVeQh9zlPmrIpAmR9RvT_3L-V_QFsV-FLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471056776</pqid></control><display><type>article</type><title>Application of vacuum distillation in refining crude indium</title><source>Springer Nature</source><creator>Jiang, Wen-Long ; Deng, Yong ; Yang, Bin ; Liu, Da-Chun ; Dai, Yong-Nian ; Xu, Bao-Qiang</creator><creatorcontrib>Jiang, Wen-Long ; Deng, Yong ; Yang, Bin ; Liu, Da-Chun ; Dai, Yong-Nian ; Xu, Bao-Qiang</creatorcontrib><description>Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation, which could approximately predict the temperature and pressure during vacuum distillation process. Second, the activity coefficients for In–Cd, In–Zn, In–Pb, In–Tl at 1373 K, and In–Sn at 1573 K were acquired by means of molecular interaction on volume model. Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients. These diagrams could estimate the compositions of products in each process during the refinement of crude indium. Finally, 1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out, and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-013-0169-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activity coefficients ; Biomaterials ; Chemistry and Materials Science ; Energy ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoscale Science and Technology ; Physical Chemistry</subject><ispartof>Rare metals, 2013-12, Vol.32 (6), p.627-631</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93</citedby><cites>FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xyjs-e/xyjs-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Wen-Long</creatorcontrib><creatorcontrib>Deng, Yong</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Liu, Da-Chun</creatorcontrib><creatorcontrib>Dai, Yong-Nian</creatorcontrib><creatorcontrib>Xu, Bao-Qiang</creatorcontrib><title>Application of vacuum distillation in refining crude indium</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation, which could approximately predict the temperature and pressure during vacuum distillation process. Second, the activity coefficients for In–Cd, In–Zn, In–Pb, In–Tl at 1373 K, and In–Sn at 1573 K were acquired by means of molecular interaction on volume model. Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients. These diagrams could estimate the compositions of products in each process during the refinement of crude indium. Finally, 1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out, and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams.</description><subject>Activity coefficients</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Energy</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Physical Chemistry</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8FD3qpTtImafC0LP6DBS97D2maLFnatDatuvvpzVIRETyECcPvvZl5CF1iuMUA_C5gQkWRAs7iYyLdH6EZLhhPOS7ocfwD4BQowafoLIQtQJ4zBjN0v-i62mk1uNYnrU3elR7HJqlcGFxdT23nk95Y553fJLofKxM7lRubc3RiVR3MxXedo_Xjw3r5nK5en16Wi1WqswIPaUkqYvLSWFsSxlklDCUVgGZG4JxyXVJrjCpLAZkSSliKeUZ0YTjJeVGKbI6uJ9sP5a3yG7ltx97HgfJztw3SkHg0MIiqObqZyK5v30YTBtm4oE28w5t2DBLnIs_iTMoievUH_XHFOcdAGecHCk-U7tsQYgiy612j-p3EIA-5yyl3GVeQh9zlPmrIpAmR9RvT_3L-V_QFsV-FLw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Jiang, Wen-Long</creator><creator>Deng, Yong</creator><creator>Yang, Bin</creator><creator>Liu, Da-Chun</creator><creator>Dai, Yong-Nian</creator><creator>Xu, Bao-Qiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Yunnan Provincial Key Laboratory of Nonferrous Vacuum Metallurgy, Kunming 650093, China</general><general>The National Engineering Laboratory for Vacuum Metallurgy,Kunming University of Science and Technology,Kunming 650093, China</general><general>State Key Laboratory Breeding Base of Complex Nonferrous Metal Resources Clear Utilization in Yunnan Province, Kunming 650093, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20131201</creationdate><title>Application of vacuum distillation in refining crude indium</title><author>Jiang, Wen-Long ; Deng, Yong ; Yang, Bin ; Liu, Da-Chun ; Dai, Yong-Nian ; Xu, Bao-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activity coefficients</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Energy</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wen-Long</creatorcontrib><creatorcontrib>Deng, Yong</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Liu, Da-Chun</creatorcontrib><creatorcontrib>Dai, Yong-Nian</creatorcontrib><creatorcontrib>Xu, Bao-Qiang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wen-Long</au><au>Deng, Yong</au><au>Yang, Bin</au><au>Liu, Da-Chun</au><au>Dai, Yong-Nian</au><au>Xu, Bao-Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of vacuum distillation in refining crude indium</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>32</volume><issue>6</issue><spage>627</spage><epage>631</epage><pages>627-631</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation, which could approximately predict the temperature and pressure during vacuum distillation process. Second, the activity coefficients for In–Cd, In–Zn, In–Pb, In–Tl at 1373 K, and In–Sn at 1573 K were acquired by means of molecular interaction on volume model. Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients. These diagrams could estimate the compositions of products in each process during the refinement of crude indium. Finally, 1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out, and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12598-013-0169-z</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2013-12, Vol.32 (6), p.627-631
issn 1001-0521
1867-7185
language eng
recordid cdi_wanfang_journals_xyjs_e201306017
source Springer Nature
subjects Activity coefficients
Biomaterials
Chemistry and Materials Science
Energy
Materials Engineering
Materials Science
Metallic Materials
Nanoscale Science and Technology
Physical Chemistry
title Application of vacuum distillation in refining crude indium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20vacuum%20distillation%20in%20refining%20crude%20indium&rft.jtitle=Rare%20metals&rft.au=Jiang,%20Wen-Long&rft.date=2013-12-01&rft.volume=32&rft.issue=6&rft.spage=627&rft.epage=631&rft.pages=627-631&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-013-0169-z&rft_dat=%3Cwanfang_jour_proqu%3Exyjs_e201306017%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1471056776&rft_id=info:pmid/&rft_wanfj_id=xyjs_e201306017&rfr_iscdi=true