Loading…
Application of vacuum distillation in refining crude indium
Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure fo...
Saved in:
Published in: | Rare metals 2013-12, Vol.32 (6), p.627-631 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93 |
container_end_page | 631 |
container_issue | 6 |
container_start_page | 627 |
container_title | Rare metals |
container_volume | 32 |
creator | Jiang, Wen-Long Deng, Yong Yang, Bin Liu, Da-Chun Dai, Yong-Nian Xu, Bao-Qiang |
description | Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation, which could approximately predict the temperature and pressure during vacuum distillation process. Second, the activity coefficients for In–Cd, In–Zn, In–Pb, In–Tl at 1373 K, and In–Sn at 1573 K were acquired by means of molecular interaction on volume model. Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients. These diagrams could estimate the compositions of products in each process during the refinement of crude indium. Finally, 1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out, and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams. |
doi_str_mv | 10.1007/s12598-013-0169-z |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_xyjs_e201306017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>xyjs_e201306017</wanfj_id><sourcerecordid>xyjs_e201306017</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8FD3qpTtImafC0LP6DBS97D2maLFnatDatuvvpzVIRETyECcPvvZl5CF1iuMUA_C5gQkWRAs7iYyLdH6EZLhhPOS7ocfwD4BQowafoLIQtQJ4zBjN0v-i62mk1uNYnrU3elR7HJqlcGFxdT23nk95Y553fJLofKxM7lRubc3RiVR3MxXedo_Xjw3r5nK5en16Wi1WqswIPaUkqYvLSWFsSxlklDCUVgGZG4JxyXVJrjCpLAZkSSliKeUZ0YTjJeVGKbI6uJ9sP5a3yG7ltx97HgfJztw3SkHg0MIiqObqZyK5v30YTBtm4oE28w5t2DBLnIs_iTMoievUH_XHFOcdAGecHCk-U7tsQYgiy612j-p3EIA-5yyl3GVeQh9zlPmrIpAmR9RvT_3L-V_QFsV-FLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1471056776</pqid></control><display><type>article</type><title>Application of vacuum distillation in refining crude indium</title><source>Springer Nature</source><creator>Jiang, Wen-Long ; Deng, Yong ; Yang, Bin ; Liu, Da-Chun ; Dai, Yong-Nian ; Xu, Bao-Qiang</creator><creatorcontrib>Jiang, Wen-Long ; Deng, Yong ; Yang, Bin ; Liu, Da-Chun ; Dai, Yong-Nian ; Xu, Bao-Qiang</creatorcontrib><description>Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation, which could approximately predict the temperature and pressure during vacuum distillation process. Second, the activity coefficients for In–Cd, In–Zn, In–Pb, In–Tl at 1373 K, and In–Sn at 1573 K were acquired by means of molecular interaction on volume model. Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients. These diagrams could estimate the compositions of products in each process during the refinement of crude indium. Finally, 1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out, and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-013-0169-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Activity coefficients ; Biomaterials ; Chemistry and Materials Science ; Energy ; Materials Engineering ; Materials Science ; Metallic Materials ; Nanoscale Science and Technology ; Physical Chemistry</subject><ispartof>Rare metals, 2013-12, Vol.32 (6), p.627-631</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2013</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93</citedby><cites>FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/xyjs-e/xyjs-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Wen-Long</creatorcontrib><creatorcontrib>Deng, Yong</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Liu, Da-Chun</creatorcontrib><creatorcontrib>Dai, Yong-Nian</creatorcontrib><creatorcontrib>Xu, Bao-Qiang</creatorcontrib><title>Application of vacuum distillation in refining crude indium</title><title>Rare metals</title><addtitle>Rare Met</addtitle><description>Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation, which could approximately predict the temperature and pressure during vacuum distillation process. Second, the activity coefficients for In–Cd, In–Zn, In–Pb, In–Tl at 1373 K, and In–Sn at 1573 K were acquired by means of molecular interaction on volume model. Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients. These diagrams could estimate the compositions of products in each process during the refinement of crude indium. Finally, 1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out, and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams.</description><subject>Activity coefficients</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Energy</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Nanoscale Science and Technology</subject><subject>Physical Chemistry</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8FD3qpTtImafC0LP6DBS97D2maLFnatDatuvvpzVIRETyECcPvvZl5CF1iuMUA_C5gQkWRAs7iYyLdH6EZLhhPOS7ocfwD4BQowafoLIQtQJ4zBjN0v-i62mk1uNYnrU3elR7HJqlcGFxdT23nk95Y553fJLofKxM7lRubc3RiVR3MxXedo_Xjw3r5nK5en16Wi1WqswIPaUkqYvLSWFsSxlklDCUVgGZG4JxyXVJrjCpLAZkSSliKeUZ0YTjJeVGKbI6uJ9sP5a3yG7ltx97HgfJztw3SkHg0MIiqObqZyK5v30YTBtm4oE28w5t2DBLnIs_iTMoievUH_XHFOcdAGecHCk-U7tsQYgiy612j-p3EIA-5yyl3GVeQh9zlPmrIpAmR9RvT_3L-V_QFsV-FLw</recordid><startdate>20131201</startdate><enddate>20131201</enddate><creator>Jiang, Wen-Long</creator><creator>Deng, Yong</creator><creator>Yang, Bin</creator><creator>Liu, Da-Chun</creator><creator>Dai, Yong-Nian</creator><creator>Xu, Bao-Qiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Yunnan Provincial Key Laboratory of Nonferrous Vacuum Metallurgy, Kunming 650093, China</general><general>The National Engineering Laboratory for Vacuum Metallurgy,Kunming University of Science and Technology,Kunming 650093, China</general><general>State Key Laboratory Breeding Base of Complex Nonferrous Metal Resources Clear Utilization in Yunnan Province, Kunming 650093, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20131201</creationdate><title>Application of vacuum distillation in refining crude indium</title><author>Jiang, Wen-Long ; Deng, Yong ; Yang, Bin ; Liu, Da-Chun ; Dai, Yong-Nian ; Xu, Bao-Qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activity coefficients</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Energy</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Nanoscale Science and Technology</topic><topic>Physical Chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Wen-Long</creatorcontrib><creatorcontrib>Deng, Yong</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Liu, Da-Chun</creatorcontrib><creatorcontrib>Dai, Yong-Nian</creatorcontrib><creatorcontrib>Xu, Bao-Qiang</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Wen-Long</au><au>Deng, Yong</au><au>Yang, Bin</au><au>Liu, Da-Chun</au><au>Dai, Yong-Nian</au><au>Xu, Bao-Qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of vacuum distillation in refining crude indium</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><date>2013-12-01</date><risdate>2013</risdate><volume>32</volume><issue>6</issue><spage>627</spage><epage>631</epage><pages>627-631</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>Vacuum distillation is a technique suitable for low boiling and melting point materials, to remove the heavy and low vapor pressure impurities at low level. As indium has low melting point and high boiling point, it is suitable for refining by vacuum distillation. First, saturation vapor pressure for major elements in crude indium was calculated by the Clausius–Clay Prang equation, which could approximately predict the temperature and pressure during vacuum distillation process. Second, the activity coefficients for In–Cd, In–Zn, In–Pb, In–Tl at 1373 K, and In–Sn at 1573 K were acquired by means of molecular interaction on volume model. Vapor–liquid equilibrium composition diagrams of those above systems in crude indium were drawn based on activity coefficients. These diagrams could estimate the compositions of products in each process during the refinement of crude indium. Finally, 1.2–1.6 ton crude indium was used per day when vacuum distillation experiments were carried out, and experimental results are in good agreement with the predicted values of the vapor–liquid equilibrium composition diagrams.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s12598-013-0169-z</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2013-12, Vol.32 (6), p.627-631 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_wanfang_journals_xyjs_e201306017 |
source | Springer Nature |
subjects | Activity coefficients Biomaterials Chemistry and Materials Science Energy Materials Engineering Materials Science Metallic Materials Nanoscale Science and Technology Physical Chemistry |
title | Application of vacuum distillation in refining crude indium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20vacuum%20distillation%20in%20refining%20crude%20indium&rft.jtitle=Rare%20metals&rft.au=Jiang,%20Wen-Long&rft.date=2013-12-01&rft.volume=32&rft.issue=6&rft.spage=627&rft.epage=631&rft.pages=627-631&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-013-0169-z&rft_dat=%3Cwanfang_jour_proqu%3Exyjs_e201306017%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c381t-b2d2e4beffb2676d9e52d00c6e91457cb5feeabb903a9a9f51732c8e72478b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1471056776&rft_id=info:pmid/&rft_wanfj_id=xyjs_e201306017&rfr_iscdi=true |