Loading…
Approximate solutions to MHD Falkner-Skan flow over permeable wall
The magnetohydrodynamic (MHD) Falkner-Skan boundary layer flow over a permeable wall in the presence of a transverse magnetic field is examined. The approximate solutions and skin friction coefficients of the MHD boundary layer flow are obtained by using a method that couples the differential transf...
Saved in:
Published in: | Applied mathematics and mechanics 2011-04, Vol.32 (4), p.401-408 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The magnetohydrodynamic (MHD) Falkner-Skan boundary layer flow over a permeable wall in the presence of a transverse magnetic field is examined. The approximate solutions and skin friction coefficients of the MHD boundary layer flow are obtained by using a method that couples the differential transform method (DTM) with the Pade approximation called DTM-Pade. The approximate solutions are expressed in the form of a power series that can be easily computed with an iterative procedure. The approximate solutions are tabulated, plotted for the values of different parameters and compared with the numerical ones obtained by employing the shooting technique. It is found that the approximate solution agrees very well with the numerical solution, showing the reliability and validity of the present work. Moreover, the effects of various physical parameters on the boundary layer flow are presented graphically and discussed. |
---|---|
ISSN: | 0253-4827 1573-2754 |
DOI: | 10.1007/s10483-011-1425-9 |