Loading…

Creep performance of PVC aged at temperature relatively close to glass transition temperature

In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are carried out at 63 ℃ with a small constant stress by a dynamic mechanical analyzer (DMA). T...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and mechanics 2012-09, Vol.33 (9), p.1129-1136
Main Author: 周志红 贺耀龙 胡宏玖 赵峰 张晓龙
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In order to predict the mechanical performance of the polyvinyl chloride (PVC) at a high operating temperature, a series of short-term tensile creep tests (one- tenth of the physical aging time) of the PVC are carried out at 63 ℃ with a small constant stress by a dynamic mechanical analyzer (DMA). The Struik-Kohlrausch (SK) formula and Struik shifting methods are used to describe these creep data for various physical aging time. A new phenomenological model based on the multiple relaxation mechanisms of an amorphous polymer is developed to quantitatively characterize the SK parameters (the initial creep compliance, the characteristic retardation time, and the shape factor) determined by the aging time. It is shown that the momentary creep compliance curve of the PVC at 63℃ can be very well fitted by the SK formula for each aging time. However, the SK parameters for the creep curves are not constant during the aging process at the elevated temperatures, and the evolution of these parameters and the creep rate versus aging time curves at the double logarithmic coordinafes have shown a nonlinear phenomenon. Moreover, the creep master curves obtained by the superposition with the Struik shifting methods are unsatisfactory in such a case. Finally, the predicted results calculated from the present model incorporating with the SK formula are in excellent agreement with the creep experimental data for the PVC isothermally aged at the temperature relatively close to the glass transition temperature.
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-012-1610-x