Loading…

Applications of scale-adaptive simulation technique based on one-equation turbulence model

A modified scale-adaptive simulation (SAS) technique based on the Spalart- Allmaras (SA) model is proposed. To clarify its capability in prediction of the complex turbulent flow, two typical cases are carried out, i.e., the subcritical flow past a circular cylinder and the transonic flow over a hemi...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and mechanics 2015-01, Vol.36 (1), p.121-130
Main Authors: Xu, Chang-yue, Zhou, Tao, Wang, Cong-lei, Sun, Jian-hong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A modified scale-adaptive simulation (SAS) technique based on the Spalart- Allmaras (SA) model is proposed. To clarify its capability in prediction of the complex turbulent flow, two typical cases are carried out, i.e., the subcritical flow past a circular cylinder and the transonic flow over a hemisphere cylinder. For comparison, the same cases are calculated by the detached-eddy simulation (DES), the delayed-detached eddy simulation (DDES), and the XY-SAS approaches. Some typical results including the mean pressure coefficient, velocity, and Reynolds stress profiles are obtained and compared with the experiments. Extensive calculations show that the proposed SAS technique can give better prediction of the massively separated flow and shock/turbulent-boundary-layer interaction than the DES and DDES methods. Furthermore, by the comparison of the XY-SAS model with the present SAS model, some improvements can be obtained.
ISSN:0253-4827
1573-2754
DOI:10.1007/s10483-015-1898-9