Loading…
Theoretical approach to one-dimensional detonation instability
Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be...
Saved in:
Published in: | Applied mathematics and mechanics 2016-09, Vol.37 (9), p.1231-1238 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3 |
container_end_page | 1238 |
container_issue | 9 |
container_start_page | 1231 |
container_title | Applied mathematics and mechanics |
container_volume | 37 |
creator | Wang, Chun Xiang, Gaoxiang Jiang, Zonglin |
description | Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilib- rium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation. Key words detonation wave, detonation instability, shock wave, chemical reaction |
doi_str_mv | 10.1007/s10483-016-2124-6 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201609008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669945559</cqvip_id><wanfj_id>yysxhlx_e201609008</wanfj_id><sourcerecordid>yysxhlx_e201609008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLegN2F19iPZzUWQ4hcUvNTzstlsmpQ022a32Px7t6SoJ0_DMM_7zsyL0DWBewIgHjwBLhkGkmFKKMfZCZqQVDBMRcpP0QRoyjCXVJyjC-9XAMAF5xP0uKit621ojG4Tvdn0Tps6CS5xncVls7adb1wXZ6UNsYbYJE3ngy6atgnDJTqrdOvt1bFO0efL82L2hucfr--zpzk2nJKAhS4qm4rKGFvpCnJjqOFCak6z0qRQUglEZlmRSyaZ1qSQpCyYLKimoA23bIruRt8v3VW6W6qV2_XxLK-Gwe_rdq8sjb9DDiAjfDvC8ZvtzvrwSxMpQQpOOIsUGSnTO-97W6lN36x1PygC6pCpGjNV0VcdMlVZ1NBR4yPbLW3_x_kf0c1xUe265TbqfjZlWZ7zNE1z9g2YB4Vh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880874143</pqid></control><display><type>article</type><title>Theoretical approach to one-dimensional detonation instability</title><source>Springer Link</source><creator>Wang, Chun ; Xiang, Gaoxiang ; Jiang, Zonglin</creator><creatorcontrib>Wang, Chun ; Xiang, Gaoxiang ; Jiang, Zonglin</creatorcontrib><description>Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilib- rium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation. Key words detonation wave, detonation instability, shock wave, chemical reaction</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-016-2124-6</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Chemical reactions ; Classical Mechanics ; Detonation waves ; Difference equations ; Equilibrium ; Fluid- and Aerodynamics ; Mach number ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Oscillators ; Partial Differential Equations ; Rarefaction</subject><ispartof>Applied mathematics and mechanics, 2016-09, Vol.37 (9), p.1231-1238</ispartof><rights>Shanghai University and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3</citedby><cites>FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Chun</creatorcontrib><creatorcontrib>Xiang, Gaoxiang</creatorcontrib><creatorcontrib>Jiang, Zonglin</creatorcontrib><title>Theoretical approach to one-dimensional detonation instability</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilib- rium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation. Key words detonation wave, detonation instability, shock wave, chemical reaction</description><subject>Applications of Mathematics</subject><subject>Chemical reactions</subject><subject>Classical Mechanics</subject><subject>Detonation waves</subject><subject>Difference equations</subject><subject>Equilibrium</subject><subject>Fluid- and Aerodynamics</subject><subject>Mach number</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Oscillators</subject><subject>Partial Differential Equations</subject><subject>Rarefaction</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLegN2F19iPZzUWQ4hcUvNTzstlsmpQ022a32Px7t6SoJ0_DMM_7zsyL0DWBewIgHjwBLhkGkmFKKMfZCZqQVDBMRcpP0QRoyjCXVJyjC-9XAMAF5xP0uKit621ojG4Tvdn0Tps6CS5xncVls7adb1wXZ6UNsYbYJE3ngy6atgnDJTqrdOvt1bFO0efL82L2hucfr--zpzk2nJKAhS4qm4rKGFvpCnJjqOFCak6z0qRQUglEZlmRSyaZ1qSQpCyYLKimoA23bIruRt8v3VW6W6qV2_XxLK-Gwe_rdq8sjb9DDiAjfDvC8ZvtzvrwSxMpQQpOOIsUGSnTO-97W6lN36x1PygC6pCpGjNV0VcdMlVZ1NBR4yPbLW3_x_kf0c1xUe265TbqfjZlWZ7zNE1z9g2YB4Vh</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Wang, Chun</creator><creator>Xiang, Gaoxiang</creator><creator>Jiang, Zonglin</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>State Key Laboratory of High Temperature Gas Dynamics, Chinese Academy of Sciences,Beijing 100190, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160901</creationdate><title>Theoretical approach to one-dimensional detonation instability</title><author>Wang, Chun ; Xiang, Gaoxiang ; Jiang, Zonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Chemical reactions</topic><topic>Classical Mechanics</topic><topic>Detonation waves</topic><topic>Difference equations</topic><topic>Equilibrium</topic><topic>Fluid- and Aerodynamics</topic><topic>Mach number</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Oscillators</topic><topic>Partial Differential Equations</topic><topic>Rarefaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun</creatorcontrib><creatorcontrib>Xiang, Gaoxiang</creatorcontrib><creatorcontrib>Jiang, Zonglin</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun</au><au>Xiang, Gaoxiang</au><au>Jiang, Zonglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical approach to one-dimensional detonation instability</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>37</volume><issue>9</issue><spage>1231</spage><epage>1238</epage><pages>1231-1238</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilib- rium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation. Key words detonation wave, detonation instability, shock wave, chemical reaction</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-016-2124-6</doi><tpages>8</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0253-4827 |
ispartof | Applied mathematics and mechanics, 2016-09, Vol.37 (9), p.1231-1238 |
issn | 0253-4827 1573-2754 |
language | eng |
recordid | cdi_wanfang_journals_yysxhlx_e201609008 |
source | Springer Link |
subjects | Applications of Mathematics Chemical reactions Classical Mechanics Detonation waves Difference equations Equilibrium Fluid- and Aerodynamics Mach number Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Oscillators Partial Differential Equations Rarefaction |
title | Theoretical approach to one-dimensional detonation instability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20approach%20to%20one-dimensional%20detonation%20instability&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Wang,%20Chun&rft.date=2016-09-01&rft.volume=37&rft.issue=9&rft.spage=1231&rft.epage=1238&rft.pages=1231-1238&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-016-2124-6&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e201609008%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880874143&rft_id=info:pmid/&rft_cqvip_id=669945559&rft_wanfj_id=yysxhlx_e201609008&rfr_iscdi=true |