Loading…

Theoretical approach to one-dimensional detonation instability

Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be...

Full description

Saved in:
Bibliographic Details
Published in:Applied mathematics and mechanics 2016-09, Vol.37 (9), p.1231-1238
Main Authors: Wang, Chun, Xiang, Gaoxiang, Jiang, Zonglin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3
cites cdi_FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3
container_end_page 1238
container_issue 9
container_start_page 1231
container_title Applied mathematics and mechanics
container_volume 37
creator Wang, Chun
Xiang, Gaoxiang
Jiang, Zonglin
description Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilib- rium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation. Key words detonation wave, detonation instability, shock wave, chemical reaction
doi_str_mv 10.1007/s10483-016-2124-6
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_yysxhlx_e201609008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>669945559</cqvip_id><wanfj_id>yysxhlx_e201609008</wanfj_id><sourcerecordid>yysxhlx_e201609008</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsFZ_gLegN2F19iPZzUWQ4hcUvNTzstlsmpQ022a32Px7t6SoJ0_DMM_7zsyL0DWBewIgHjwBLhkGkmFKKMfZCZqQVDBMRcpP0QRoyjCXVJyjC-9XAMAF5xP0uKit621ojG4Tvdn0Tps6CS5xncVls7adb1wXZ6UNsYbYJE3ngy6atgnDJTqrdOvt1bFO0efL82L2hucfr--zpzk2nJKAhS4qm4rKGFvpCnJjqOFCak6z0qRQUglEZlmRSyaZ1qSQpCyYLKimoA23bIruRt8v3VW6W6qV2_XxLK-Gwe_rdq8sjb9DDiAjfDvC8ZvtzvrwSxMpQQpOOIsUGSnTO-97W6lN36x1PygC6pCpGjNV0VcdMlVZ1NBR4yPbLW3_x_kf0c1xUe265TbqfjZlWZ7zNE1z9g2YB4Vh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880874143</pqid></control><display><type>article</type><title>Theoretical approach to one-dimensional detonation instability</title><source>Springer Link</source><creator>Wang, Chun ; Xiang, Gaoxiang ; Jiang, Zonglin</creator><creatorcontrib>Wang, Chun ; Xiang, Gaoxiang ; Jiang, Zonglin</creatorcontrib><description>Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilib- rium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation. Key words detonation wave, detonation instability, shock wave, chemical reaction</description><edition>English ed.</edition><identifier>ISSN: 0253-4827</identifier><identifier>EISSN: 1573-2754</identifier><identifier>DOI: 10.1007/s10483-016-2124-6</identifier><language>eng</language><publisher>Shanghai: Shanghai University</publisher><subject>Applications of Mathematics ; Chemical reactions ; Classical Mechanics ; Detonation waves ; Difference equations ; Equilibrium ; Fluid- and Aerodynamics ; Mach number ; Mathematical Modeling and Industrial Mathematics ; Mathematics ; Mathematics and Statistics ; Oscillators ; Partial Differential Equations ; Rarefaction</subject><ispartof>Applied mathematics and mechanics, 2016-09, Vol.37 (9), p.1231-1238</ispartof><rights>Shanghai University and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3</citedby><cites>FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86647X/86647X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Chun</creatorcontrib><creatorcontrib>Xiang, Gaoxiang</creatorcontrib><creatorcontrib>Jiang, Zonglin</creatorcontrib><title>Theoretical approach to one-dimensional detonation instability</title><title>Applied mathematics and mechanics</title><addtitle>Appl. Math. Mech.-Engl. Ed</addtitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><description>Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilib- rium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation. Key words detonation wave, detonation instability, shock wave, chemical reaction</description><subject>Applications of Mathematics</subject><subject>Chemical reactions</subject><subject>Classical Mechanics</subject><subject>Detonation waves</subject><subject>Difference equations</subject><subject>Equilibrium</subject><subject>Fluid- and Aerodynamics</subject><subject>Mach number</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Oscillators</subject><subject>Partial Differential Equations</subject><subject>Rarefaction</subject><issn>0253-4827</issn><issn>1573-2754</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsFZ_gLegN2F19iPZzUWQ4hcUvNTzstlsmpQ022a32Px7t6SoJ0_DMM_7zsyL0DWBewIgHjwBLhkGkmFKKMfZCZqQVDBMRcpP0QRoyjCXVJyjC-9XAMAF5xP0uKit621ojG4Tvdn0Tps6CS5xncVls7adb1wXZ6UNsYbYJE3ngy6atgnDJTqrdOvt1bFO0efL82L2hucfr--zpzk2nJKAhS4qm4rKGFvpCnJjqOFCak6z0qRQUglEZlmRSyaZ1qSQpCyYLKimoA23bIruRt8v3VW6W6qV2_XxLK-Gwe_rdq8sjb9DDiAjfDvC8ZvtzvrwSxMpQQpOOIsUGSnTO-97W6lN36x1PygC6pCpGjNV0VcdMlVZ1NBR4yPbLW3_x_kf0c1xUe265TbqfjZlWZ7zNE1z9g2YB4Vh</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Wang, Chun</creator><creator>Xiang, Gaoxiang</creator><creator>Jiang, Zonglin</creator><general>Shanghai University</general><general>Springer Nature B.V</general><general>State Key Laboratory of High Temperature Gas Dynamics, Chinese Academy of Sciences,Beijing 100190, China</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20160901</creationdate><title>Theoretical approach to one-dimensional detonation instability</title><author>Wang, Chun ; Xiang, Gaoxiang ; Jiang, Zonglin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Chemical reactions</topic><topic>Classical Mechanics</topic><topic>Detonation waves</topic><topic>Difference equations</topic><topic>Equilibrium</topic><topic>Fluid- and Aerodynamics</topic><topic>Mach number</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Oscillators</topic><topic>Partial Differential Equations</topic><topic>Rarefaction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chun</creatorcontrib><creatorcontrib>Xiang, Gaoxiang</creatorcontrib><creatorcontrib>Jiang, Zonglin</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Applied mathematics and mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chun</au><au>Xiang, Gaoxiang</au><au>Jiang, Zonglin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theoretical approach to one-dimensional detonation instability</atitle><jtitle>Applied mathematics and mechanics</jtitle><stitle>Appl. Math. Mech.-Engl. Ed</stitle><addtitle>Applied Mathematics and Mechanics(English Edition)</addtitle><date>2016-09-01</date><risdate>2016</risdate><volume>37</volume><issue>9</issue><spage>1231</spage><epage>1238</epage><pages>1231-1238</pages><issn>0253-4827</issn><eissn>1573-2754</eissn><abstract>Detonation instability is a fundamental problem for understanding the microbehavior of a detonation front. With the theoretical approach of shock dynamics, detonation instability can be mathematically described as a second-order ordinary difference equation. A one-dimensional detonation wave can be modelled as a type of oscillators. There are two different physical mechanisms controlling the behaviors of a detonation. If the shock Mach number is smaller than the equilibrium Mach number, the fluid will reach the sonic speed before the end of the chemical reaction. Then, thermal chock occurs, and the leading shock becomes stronger. If the shock Mach number is larger than the equilib- rium Mach number, the fluid will be subsonic at the end of the chemical reaction. Then, the downstream rarefaction waves propagate upstream, and weaken the leading shock. The above two mechanisms are the basic recovery forces toward the equilibrium state for detonation sustenance and propagation. The detonation oscillator concept is helpful for understanding the oscillating and periodic behaviors of detonation waves. The shock dynamics theory of detonation instability gives a description of the feedback regime of the chemical reaction, which causes variations of the leading shock of the detonation. Key words detonation wave, detonation instability, shock wave, chemical reaction</abstract><cop>Shanghai</cop><pub>Shanghai University</pub><doi>10.1007/s10483-016-2124-6</doi><tpages>8</tpages><edition>English ed.</edition><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0253-4827
ispartof Applied mathematics and mechanics, 2016-09, Vol.37 (9), p.1231-1238
issn 0253-4827
1573-2754
language eng
recordid cdi_wanfang_journals_yysxhlx_e201609008
source Springer Link
subjects Applications of Mathematics
Chemical reactions
Classical Mechanics
Detonation waves
Difference equations
Equilibrium
Fluid- and Aerodynamics
Mach number
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Oscillators
Partial Differential Equations
Rarefaction
title Theoretical approach to one-dimensional detonation instability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theoretical%20approach%20to%20one-dimensional%20detonation%20instability&rft.jtitle=Applied%20mathematics%20and%20mechanics&rft.au=Wang,%20Chun&rft.date=2016-09-01&rft.volume=37&rft.issue=9&rft.spage=1231&rft.epage=1238&rft.pages=1231-1238&rft.issn=0253-4827&rft.eissn=1573-2754&rft_id=info:doi/10.1007/s10483-016-2124-6&rft_dat=%3Cwanfang_jour_proqu%3Eyysxhlx_e201609008%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-7abfe57fccefaf09cc2c478a426dc50d2801866b98383aa1b81db38b2a20ac4e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1880874143&rft_id=info:pmid/&rft_cqvip_id=669945559&rft_wanfj_id=yysxhlx_e201609008&rfr_iscdi=true