Loading…
Nonlinear magneto-mechanical-thermo coupling characteristic analysis for transport behaviors of carriers in composite multiferroic piezoelectric semiconductor nanoplates with surface effect
In this paper, to better reveal the surface effect and the screening effect as well as the nonlinear multi-field coupling characteristic of the multifunctional piezoelectric semiconductor (PS) nanodevice, and to further improve its working performance, a magneto-mechanical-thermo coupling theoretica...
Saved in:
Published in: | Applied mathematics and mechanics 2022-09, Vol.43 (9), p.1323-1338 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, to better reveal the surface effect and the screening effect as well as the nonlinear multi-field coupling characteristic of the multifunctional piezoelectric semiconductor (PS) nanodevice, and to further improve its working performance, a magneto-mechanical-thermo coupling theoretical model is theoretically established for the extensional analysis of a three-layered magneto-electro-semiconductor coupling laminated nanoplate with the surface effect. Next, by using the current theoretical model, some numerical analyses and discussion about the surface effect, the corresponding critical thickness of the nanoplate, and the distributions of the physical fields (including the electron concentration perturbation, the electric potential, the electric field, the average electric displacement, the effective polarization charge density, and the total charge density) under different initial state electron concentrations, as well as their active manipulation via some external magnetic field, pre-stress, and temperature stimuli, are performed. Utilizing the nonlinear multi-field coupling effect induced by inevitable external stimuli in the device operating environment, this paper not only provides theoretical support for understanding the size-dependent tuning/controlling of carrier transport as well as its screening effect, but also assists the design of a series of multiferroic PS nanodevices. |
---|---|
ISSN: | 0253-4827 1573-2754 |
DOI: | 10.1007/s10483-022-2894-9 |