Loading…

ST-Trader: A Spatial-Temporal Deep Neural Network for Modeling Stock Market Movement

Stocks that are fundamentally connected with each other tend to move together. Considering such common trends is believed to benefit stock movement forecasting tasks. However, such signals are not trivial to model because the connections among stocks are not physically presented and need to be estim...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/CAA journal of automatica sinica 2021-05, Vol.8 (5), p.1015-1024
Main Authors: Hou, Xiurui, Wang, Kai, Zhong, Cheng, Wei, Zhi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Stocks that are fundamentally connected with each other tend to move together. Considering such common trends is believed to benefit stock movement forecasting tasks. However, such signals are not trivial to model because the connections among stocks are not physically presented and need to be estimated from volatile data. Motivated by this observation, we propose a framework that incorporates the inter-connection of firms to forecast stock prices. To effectively utilize a large set of fundamental features, we further design a novel pipeline. First, we use variational autoencoder (VAE) to reduce the dimension of stock fundamental information and then cluster stocks into a graph structure (fundamentally clustering). Second, a hybrid model of graph convolutional network and long-short term memory network (GCN-LSTM) with an adjacency graph matrix (learnt from VAE) is proposed for graph-structured stock market forecasting. Experiments on minute-level U.S. stock market data demonstrate that our model effectively captures both spatial and temporal signals and achieves superior improvement over baseline methods. The proposed model is promising for other applications in which there is a possible but hidden spatial dependency to improve time-series prediction.
ISSN:2329-9266
2329-9274
DOI:10.1109/JAS.2021.1003976