Loading…
Validation of Global Evapotranspiration Product (MOD16) Using Flux Tower Data from Panjin Coastal Wetland, Northeast China
Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration (ET) product from the Moderate Resolution Imaging Spectrometer (MOD16). The accuracy of this product however has not been tested for coastal wetland ecosystems. The objective of this st...
Saved in:
Published in: | Chinese geographical science 2018-06, Vol.28 (3), p.420-429 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration (ET) product from the Moderate Resolution Imaging Spectrometer (MOD16). The accuracy of this product however has not been tested for coastal wetland ecosystems. The objective of this study therefore is to validate the MOD16 ET product using data from one eddy covariance flux tower situated in the Panjin coastal wetland ecosystem within the Liaohe River Delta, Northeast China. Cumulative ET data over an eight-day period in 2005 from the flux tower was calculated to coincide with the MOD16 products across the same period. Results showed that data from the flux tower were inconsistent with that gained form the MOD16 ET. In general, results from Panjin showed that there was an underestimation of MOD16 ET in the spring and fall, with
Biases
of–2.27 and–3.53 mm/8d, respectively (–40.58% and–49.13% of the observed mean). Results for
Bias
during the summer had a range of 1.77 mm/8d (7.82% of the observed mean), indicating an overestimation of MOD16 ET. According to the RMSE, summer (6.14 mm/8d) achieved the lowest value, indicating low accuracy of the MOD16 ET product. However, RMSE (2.09 mm/8d) in spring was the same as that in the fall. Relationship between ET and its relevant meteorological parameters were analyzed. Results indicated a very good relationship between surface air temperature and ET. Meanwhile a significant relationship between wind speed and ET also existed. The inconsistent comparison of MOD16 and flux tower-based ET are mainly attributed to the parameterization of the Penman-Monteith model, flux tower measurement errors, and flux tower footprint vs. MODIS pixels. |
---|---|
ISSN: | 1002-0063 1993-064X |
DOI: | 10.1007/s11769-018-0960-8 |