Loading…

d-Proline capped gold nanoclusters for turn-on detection of serum Raltitrexed

Using d-proline (d-Pro) as the reducing agent and capper, d-Pro@AuNCs was rapidly constructed. Its fluorescence could be quenched by AuNPs. Due to the electrostatic interaction between anticancer drug Raltitrexed (RTX) and AuNPs induced fluorescence “turn-on” principle, the resultant fluorescent pro...

Full description

Saved in:
Bibliographic Details
Published in:Chinese chemical letters 2019-09, Vol.30 (9), p.1627-1630
Main Authors: Lan, Weifei, Tan, Qiqi, Qiao, Juan, Shen, Gangyi, Qi, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Using d-proline (d-Pro) as the reducing agent and capper, d-Pro@AuNCs was rapidly constructed. Its fluorescence could be quenched by AuNPs. Due to the electrostatic interaction between anticancer drug Raltitrexed (RTX) and AuNPs induced fluorescence “turn-on” principle, the resultant fluorescent probe exhibited good selectivity and sensitivity for detecting RTX in rat serums. [Display omitted] With d-proline as the reducing and capping agent, fluorescent gold nanoclusters were rapidly prepared (d-Pro@AuNCs) within 10 min at 100 °C. In the present of gold nanoparticles, the fluorescence of d-Pro@AuNCs was remarkably quenched. Interestingly, based on the electrostatic interaction between anticancer drug Raltitrexed and gold nanoparticles induced fluorescence “turn-on” principle, a high selective assay for detection of Raltitrexed was established with the probe associating the fluorescence emission at 435 nm. The fluorescence intensity of d-Pro@AuNCs linearly correlated with the concentration of Raltitrexed in the range from 5.0 μmol/L to 40.0 μmol/L (R2 = 0.999) and the limit of detection was 1.9 μmol/L. Further, after Raltitrexed was abdominal injected in rats, a metabolic approach was constructed with the prepared fluorescent probe. It showed great potential of AuNCs-based sensing probes for application in analysis of serum anticancer drugs.
ISSN:1001-8417
1878-5964
DOI:10.1016/j.cclet.2019.05.019