Loading…
Synergy of photocatalytic reduction and adsorption for boosting uranium removal with PMo12/UiO-66 heterojunction
In this work, we proposed a new U(VI) removal strategy combining adsorption and photocatalytic reduction by the PMo12/UiO-66 heterojunctions. The PMo12 has been encapsulated in the cavities of UiO-66 by a one-step hydrothermal method, and the PMo12/UiO-66 exhibited high adsorption capacity and photo...
Saved in:
Published in: | Chinese chemical letters 2022-07, Vol.33 (7), p.3577-3580 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this work, we proposed a new U(VI) removal strategy combining adsorption and photocatalytic reduction by the PMo12/UiO-66 heterojunctions. The PMo12 has been encapsulated in the cavities of UiO-66 by a one-step hydrothermal method, and the PMo12/UiO-66 exhibited high adsorption capacity and photocatalytic activity. The maximal theoretical sorption capacity of U(VI) on 15% PMo12/UiO-66 reached 225.36 mg/g and the photoreduction rate of 15% PMo12/UiO-66 is about thirty times as much as UiO-66. Under the light irradiation, the photogenerated electrons rapidly transport from UiO-66 to PMo12, and the photo-generated electrons could efficiently reduce the pre-enriched U(VI) to U(IV). This work provides new insights into remediation of the radioactive environment.
The encapsulation of PMo12 in the cavities of UiO-66 could boost both adsorption and photocatalysis for the extraction of U(VI). [Display omitted] |
---|---|
ISSN: | 1001-8417 1878-5964 |
DOI: | 10.1016/j.cclet.2022.01.062 |