Loading…

Flow Separation and Vortex Dynamics in Waves Propagating over A Submerged Quartercircular Breakwater

The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a Reynolds-Averaged Navier–Stokes (RANS) flow solver with a Volume of Fluid (VOF) surface capturing scheme (RANS-VOF) model. The vertical variation of the instantaneous velocity indicates that flow sepa...

Full description

Saved in:
Bibliographic Details
Published in:China ocean engineering 2018-10, Vol.32 (5), p.514-523
Main Authors: Jiang, Xue-lian, Yang, Tian, Zou, Qing-ping, Gu, Han-bin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-d42c9e36bc2c3d3875bfbf49a525f66aefd222036922ef91839debea716c3b513
cites cdi_FETCH-LOGICAL-c393t-d42c9e36bc2c3d3875bfbf49a525f66aefd222036922ef91839debea716c3b513
container_end_page 523
container_issue 5
container_start_page 514
container_title China ocean engineering
container_volume 32
creator Jiang, Xue-lian
Yang, Tian
Zou, Qing-ping
Gu, Han-bin
description The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a Reynolds-Averaged Navier–Stokes (RANS) flow solver with a Volume of Fluid (VOF) surface capturing scheme (RANS-VOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation, therefore, scour on the leeside of the breakwater.
doi_str_mv 10.1007/s13344-018-0054-5
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zghygc_e201805002</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zghygc_e201805002</wanfj_id><sourcerecordid>zghygc_e201805002</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-d42c9e36bc2c3d3875bfbf49a525f66aefd222036922ef91839debea716c3b513</originalsourceid><addsrcrecordid>eNp1kEtLxDAURoMoOI7-AHcBVy6qeTRts_StIKj4Wobb9LZWZ9Ixmc44_nqjFVy5ClzO-QKHkF3ODjhj-WHgUqZpwniRMKbSRK2RkeCaJ4VO1ToZsUKzRKVFvkm2QniNDFcpH5HqfNIt6T3OwMO87RwFV9Gnzs_xg56uHExbG2jr6DMsMNBb382giaBraLdAT4_ofV9O0TdY0bseouZt620_AU-PPcLbEuJpm2zUMAm48_uOyeP52cPJZXJ9c3F1cnSdWKnlPKlSYTXKrLTCykoWuSrrsk41KKHqLAOsKyEEk5kWAmvNC6krLBFynllZKi7HZH_YXYKrwTXmteu9iz-az-Zl1ViDIgZiijER2b2Bnfnuvccw_4MF5yLTefFD8YGyvgvBY21mvp2CXxnOzHd4M4Q3cdd8hzcqOmJwQmRdg_5v-X_pC2G2hkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112697802</pqid></control><display><type>article</type><title>Flow Separation and Vortex Dynamics in Waves Propagating over A Submerged Quartercircular Breakwater</title><source>Springer Nature</source><creator>Jiang, Xue-lian ; Yang, Tian ; Zou, Qing-ping ; Gu, Han-bin</creator><creatorcontrib>Jiang, Xue-lian ; Yang, Tian ; Zou, Qing-ping ; Gu, Han-bin</creatorcontrib><description>The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a Reynolds-Averaged Navier–Stokes (RANS) flow solver with a Volume of Fluid (VOF) surface capturing scheme (RANS-VOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation, therefore, scour on the leeside of the breakwater.</description><identifier>ISSN: 0890-5487</identifier><identifier>EISSN: 2191-8945</identifier><identifier>DOI: 10.1007/s13344-018-0054-5</identifier><language>eng</language><publisher>Nanjing: Chinese Ocean Engineering Society</publisher><subject>Boundary layer ; Boundary layers ; Breakwaters ; Cnoidal waves ; Coastal Sciences ; Computational fluid dynamics ; Dynamics ; Empirical analysis ; Engineering ; Entrainment ; Fields ; Flow separation ; Fluid flow ; Fluid- and Aerodynamics ; Hydrodynamics ; Interactions ; Marine &amp; Freshwater Sciences ; Numerical and Computational Physics ; Oceanography ; Offshore Engineering ; Parametric analysis ; Reynolds averaged Navier-Stokes method ; Separation ; Simulation ; Velocity ; Vortices ; Vorticity ; Wave propagation</subject><ispartof>China ocean engineering, 2018-10, Vol.32 (5), p.514-523</ispartof><rights>Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-d42c9e36bc2c3d3875bfbf49a525f66aefd222036922ef91839debea716c3b513</citedby><cites>FETCH-LOGICAL-c393t-d42c9e36bc2c3d3875bfbf49a525f66aefd222036922ef91839debea716c3b513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zghygc-e/zghygc-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Xue-lian</creatorcontrib><creatorcontrib>Yang, Tian</creatorcontrib><creatorcontrib>Zou, Qing-ping</creatorcontrib><creatorcontrib>Gu, Han-bin</creatorcontrib><title>Flow Separation and Vortex Dynamics in Waves Propagating over A Submerged Quartercircular Breakwater</title><title>China ocean engineering</title><addtitle>China Ocean Eng</addtitle><description>The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a Reynolds-Averaged Navier–Stokes (RANS) flow solver with a Volume of Fluid (VOF) surface capturing scheme (RANS-VOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation, therefore, scour on the leeside of the breakwater.</description><subject>Boundary layer</subject><subject>Boundary layers</subject><subject>Breakwaters</subject><subject>Cnoidal waves</subject><subject>Coastal Sciences</subject><subject>Computational fluid dynamics</subject><subject>Dynamics</subject><subject>Empirical analysis</subject><subject>Engineering</subject><subject>Entrainment</subject><subject>Fields</subject><subject>Flow separation</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Hydrodynamics</subject><subject>Interactions</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Numerical and Computational Physics</subject><subject>Oceanography</subject><subject>Offshore Engineering</subject><subject>Parametric analysis</subject><subject>Reynolds averaged Navier-Stokes method</subject><subject>Separation</subject><subject>Simulation</subject><subject>Velocity</subject><subject>Vortices</subject><subject>Vorticity</subject><subject>Wave propagation</subject><issn>0890-5487</issn><issn>2191-8945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAURoMoOI7-AHcBVy6qeTRts_StIKj4Wobb9LZWZ9Ixmc44_nqjFVy5ClzO-QKHkF3ODjhj-WHgUqZpwniRMKbSRK2RkeCaJ4VO1ToZsUKzRKVFvkm2QniNDFcpH5HqfNIt6T3OwMO87RwFV9Gnzs_xg56uHExbG2jr6DMsMNBb382giaBraLdAT4_ofV9O0TdY0bseouZt620_AU-PPcLbEuJpm2zUMAm48_uOyeP52cPJZXJ9c3F1cnSdWKnlPKlSYTXKrLTCykoWuSrrsk41KKHqLAOsKyEEk5kWAmvNC6krLBFynllZKi7HZH_YXYKrwTXmteu9iz-az-Zl1ViDIgZiijER2b2Bnfnuvccw_4MF5yLTefFD8YGyvgvBY21mvp2CXxnOzHd4M4Q3cdd8hzcqOmJwQmRdg_5v-X_pC2G2hkA</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Jiang, Xue-lian</creator><creator>Yang, Tian</creator><creator>Zou, Qing-ping</creator><creator>Gu, Han-bin</creator><general>Chinese Ocean Engineering Society</general><general>Springer Nature B.V</general><general>State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China%Tianjin Key Laboratory of Soft Soil Characteristics &amp; Engineering Environment, Tianjin Chengjian University, Tianjin 300384, China%The Lyell Centre for Earth and Marine Science and Technology, Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh, EH144AS, UK%School of Naval Architecture &amp;Mechanical-Electrical Engineering, Zhejiang Ocean University, Zhoushan 316022, China</general><general>Tianjin Key Laboratory of Soft Soil Characteristics &amp; Engineering Environment, Tianjin Chengjian University, Tianjin 300384, China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20181001</creationdate><title>Flow Separation and Vortex Dynamics in Waves Propagating over A Submerged Quartercircular Breakwater</title><author>Jiang, Xue-lian ; Yang, Tian ; Zou, Qing-ping ; Gu, Han-bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-d42c9e36bc2c3d3875bfbf49a525f66aefd222036922ef91839debea716c3b513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary layer</topic><topic>Boundary layers</topic><topic>Breakwaters</topic><topic>Cnoidal waves</topic><topic>Coastal Sciences</topic><topic>Computational fluid dynamics</topic><topic>Dynamics</topic><topic>Empirical analysis</topic><topic>Engineering</topic><topic>Entrainment</topic><topic>Fields</topic><topic>Flow separation</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Hydrodynamics</topic><topic>Interactions</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Numerical and Computational Physics</topic><topic>Oceanography</topic><topic>Offshore Engineering</topic><topic>Parametric analysis</topic><topic>Reynolds averaged Navier-Stokes method</topic><topic>Separation</topic><topic>Simulation</topic><topic>Velocity</topic><topic>Vortices</topic><topic>Vorticity</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xue-lian</creatorcontrib><creatorcontrib>Yang, Tian</creatorcontrib><creatorcontrib>Zou, Qing-ping</creatorcontrib><creatorcontrib>Gu, Han-bin</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>China ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xue-lian</au><au>Yang, Tian</au><au>Zou, Qing-ping</au><au>Gu, Han-bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow Separation and Vortex Dynamics in Waves Propagating over A Submerged Quartercircular Breakwater</atitle><jtitle>China ocean engineering</jtitle><stitle>China Ocean Eng</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>32</volume><issue>5</issue><spage>514</spage><epage>523</epage><pages>514-523</pages><issn>0890-5487</issn><eissn>2191-8945</eissn><abstract>The interactions of cnoidal waves with a submerged quartercircular breakwater are investigated by a Reynolds-Averaged Navier–Stokes (RANS) flow solver with a Volume of Fluid (VOF) surface capturing scheme (RANS-VOF) model. The vertical variation of the instantaneous velocity indicates that flow separation occurs at the boundary layer near the breakwater. The temporal evolution of the velocity and vorticity fields demonstrates vortex generation and shedding around the submerged quartercircular breakwater due to the flow separation. An empirical relationship between the vortex intensity and a few hydrodynamic parameters is proposed based on parametric analysis. In addition, the instantaneous and time-averaged vorticity fields reveal a pair of vortices of opposite signs at the breakwater which are expected to have significant effect on sediment entrainment, suspension, and transportation, therefore, scour on the leeside of the breakwater.</abstract><cop>Nanjing</cop><pub>Chinese Ocean Engineering Society</pub><doi>10.1007/s13344-018-0054-5</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-5487
ispartof China ocean engineering, 2018-10, Vol.32 (5), p.514-523
issn 0890-5487
2191-8945
language eng
recordid cdi_wanfang_journals_zghygc_e201805002
source Springer Nature
subjects Boundary layer
Boundary layers
Breakwaters
Cnoidal waves
Coastal Sciences
Computational fluid dynamics
Dynamics
Empirical analysis
Engineering
Entrainment
Fields
Flow separation
Fluid flow
Fluid- and Aerodynamics
Hydrodynamics
Interactions
Marine & Freshwater Sciences
Numerical and Computational Physics
Oceanography
Offshore Engineering
Parametric analysis
Reynolds averaged Navier-Stokes method
Separation
Simulation
Velocity
Vortices
Vorticity
Wave propagation
title Flow Separation and Vortex Dynamics in Waves Propagating over A Submerged Quartercircular Breakwater
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20Separation%20and%20Vortex%20Dynamics%20in%20Waves%20Propagating%20over%20A%20Submerged%20Quartercircular%20Breakwater&rft.jtitle=China%20ocean%20engineering&rft.au=Jiang,%20Xue-lian&rft.date=2018-10-01&rft.volume=32&rft.issue=5&rft.spage=514&rft.epage=523&rft.pages=514-523&rft.issn=0890-5487&rft.eissn=2191-8945&rft_id=info:doi/10.1007/s13344-018-0054-5&rft_dat=%3Cwanfang_jour_proqu%3Ezghygc_e201805002%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-d42c9e36bc2c3d3875bfbf49a525f66aefd222036922ef91839debea716c3b513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2112697802&rft_id=info:pmid/&rft_wanfj_id=zghygc_e201805002&rfr_iscdi=true