Loading…

Prediction of Load—Displacement Curve of Flexible Pipe Carcass Under Radial Compression Based on Residual Neural Network

The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical pr...

Full description

Saved in:
Bibliographic Details
Published in:China ocean engineering 2023-02, Vol.37 (1), p.42-52
Main Authors: Yan, Jun, Li, Wen-bo, Vaz, Murilo Augusto, Lu, Hai-long, Zhang, Heng-rui, Du, Hong-ze, Bu, Yu-feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c393t-8bffcc4497d4a41d73464ce1eb1afb082a7e2009a10adbc05daa394f3821cb7c3
cites cdi_FETCH-LOGICAL-c393t-8bffcc4497d4a41d73464ce1eb1afb082a7e2009a10adbc05daa394f3821cb7c3
container_end_page 52
container_issue 1
container_start_page 42
container_title China ocean engineering
container_volume 37
creator Yan, Jun
Li, Wen-bo
Vaz, Murilo Augusto
Lu, Hai-long
Zhang, Heng-rui
Du, Hong-ze
Bu, Yu-feng
description The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load–displacement curves of carcasses with different inner diameter in plastic states under radial compression. The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load–displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.
doi_str_mv 10.1007/s13344-023-0004-8
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zghygc_e202301004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zghygc_e202301004</wanfj_id><sourcerecordid>zghygc_e202301004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-8bffcc4497d4a41d73464ce1eb1afb082a7e2009a10adbc05daa394f3821cb7c3</originalsourceid><addsrcrecordid>eNp1kc1u1TAQhS0EUi8tD9CdJVYsUsY_aeIlhLYgXbVVRdfWxJ5cUnKTYCf9W_UheEKeBF9SqStWM9L5zhlpDmOHAo4EQPExCqW0zkCqDAB0Vr5iKymMyEqj89dsBaWBLNdlscfexngDkItcixV7vAzkWze1Q8-Hhq8H9H-efn9p49ihoy31E6_mcEs78bSj-7buiF-2I_EKg8MY-XXvKfAr9C12vBq2Y6AYd3GfMZLnabmi2Po5qec0h39juhvCzwP2psEu0rvnuc-uT0--V1-z9cXZt-rTOnPKqCkr66ZxTmtTeI1a-ELpY-1IUC2wqaGUWJAEMCgAfe0g94jK6EaVUri6cGqffVhy77BvsN_Ym2EOfbpoHzc_HjbOJrtUkN6oE_t-Yccw_JopTi-wLIw41kZISJRYKBeGGAM1dgztFsODFWB3ddilDpty7a4OWyaPXDwxsf2Gwkvy_01_Afx-juA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2791649120</pqid></control><display><type>article</type><title>Prediction of Load—Displacement Curve of Flexible Pipe Carcass Under Radial Compression Based on Residual Neural Network</title><source>Springer Link</source><creator>Yan, Jun ; Li, Wen-bo ; Vaz, Murilo Augusto ; Lu, Hai-long ; Zhang, Heng-rui ; Du, Hong-ze ; Bu, Yu-feng</creator><creatorcontrib>Yan, Jun ; Li, Wen-bo ; Vaz, Murilo Augusto ; Lu, Hai-long ; Zhang, Heng-rui ; Du, Hong-ze ; Bu, Yu-feng</creatorcontrib><description>The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load–displacement curves of carcasses with different inner diameter in plastic states under radial compression. The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load–displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.</description><identifier>ISSN: 0890-5487</identifier><identifier>EISSN: 2191-8945</identifier><identifier>DOI: 10.1007/s13344-023-0004-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Artificial neural networks ; Carcasses ; Coastal Sciences ; Compression ; Deformation ; Displacement ; Elastic deformation ; Engineering ; Equivalence ; Experimental data ; Flexible pipes ; Fluid- and Aerodynamics ; Marine &amp; Freshwater Sciences ; Mechanical properties ; Neural networks ; Numerical and Computational Physics ; Oceanography ; Offshore Engineering ; Original Paper ; Plastic deformation ; Plastics ; Simulation ; Stainless steel ; Stainless steels</subject><ispartof>China ocean engineering, 2023-02, Vol.37 (1), p.42-52</ispartof><rights>Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-8bffcc4497d4a41d73464ce1eb1afb082a7e2009a10adbc05daa394f3821cb7c3</citedby><cites>FETCH-LOGICAL-c393t-8bffcc4497d4a41d73464ce1eb1afb082a7e2009a10adbc05daa394f3821cb7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zghygc-e/zghygc-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Li, Wen-bo</creatorcontrib><creatorcontrib>Vaz, Murilo Augusto</creatorcontrib><creatorcontrib>Lu, Hai-long</creatorcontrib><creatorcontrib>Zhang, Heng-rui</creatorcontrib><creatorcontrib>Du, Hong-ze</creatorcontrib><creatorcontrib>Bu, Yu-feng</creatorcontrib><title>Prediction of Load—Displacement Curve of Flexible Pipe Carcass Under Radial Compression Based on Residual Neural Network</title><title>China ocean engineering</title><addtitle>China Ocean Eng</addtitle><description>The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load–displacement curves of carcasses with different inner diameter in plastic states under radial compression. The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load–displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.</description><subject>Accuracy</subject><subject>Artificial neural networks</subject><subject>Carcasses</subject><subject>Coastal Sciences</subject><subject>Compression</subject><subject>Deformation</subject><subject>Displacement</subject><subject>Elastic deformation</subject><subject>Engineering</subject><subject>Equivalence</subject><subject>Experimental data</subject><subject>Flexible pipes</subject><subject>Fluid- and Aerodynamics</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Mechanical properties</subject><subject>Neural networks</subject><subject>Numerical and Computational Physics</subject><subject>Oceanography</subject><subject>Offshore Engineering</subject><subject>Original Paper</subject><subject>Plastic deformation</subject><subject>Plastics</subject><subject>Simulation</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><issn>0890-5487</issn><issn>2191-8945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1TAQhS0EUi8tD9CdJVYsUsY_aeIlhLYgXbVVRdfWxJ5cUnKTYCf9W_UheEKeBF9SqStWM9L5zhlpDmOHAo4EQPExCqW0zkCqDAB0Vr5iKymMyEqj89dsBaWBLNdlscfexngDkItcixV7vAzkWze1Q8-Hhq8H9H-efn9p49ihoy31E6_mcEs78bSj-7buiF-2I_EKg8MY-XXvKfAr9C12vBq2Y6AYd3GfMZLnabmi2Po5qec0h39juhvCzwP2psEu0rvnuc-uT0--V1-z9cXZt-rTOnPKqCkr66ZxTmtTeI1a-ELpY-1IUC2wqaGUWJAEMCgAfe0g94jK6EaVUri6cGqffVhy77BvsN_Ym2EOfbpoHzc_HjbOJrtUkN6oE_t-Yccw_JopTi-wLIw41kZISJRYKBeGGAM1dgztFsODFWB3ddilDpty7a4OWyaPXDwxsf2Gwkvy_01_Afx-juA</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Yan, Jun</creator><creator>Li, Wen-bo</creator><creator>Vaz, Murilo Augusto</creator><creator>Lu, Hai-long</creator><creator>Zhang, Heng-rui</creator><creator>Du, Hong-ze</creator><creator>Bu, Yu-feng</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Ningbo Research Institute of Dalian University of Technology,Ningbo 315016,China%State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China%Ocean Engineering Program,Federal University of Rio de Janeiro,Rio de Janeiro 21941-901,Brazil</general><general>State Key Laboratory of Structural Analysis for Industrial Equipment,Department of Engineering Mechanics,Dalian University of Technology,Dalian 116024,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230201</creationdate><title>Prediction of Load—Displacement Curve of Flexible Pipe Carcass Under Radial Compression Based on Residual Neural Network</title><author>Yan, Jun ; Li, Wen-bo ; Vaz, Murilo Augusto ; Lu, Hai-long ; Zhang, Heng-rui ; Du, Hong-ze ; Bu, Yu-feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-8bffcc4497d4a41d73464ce1eb1afb082a7e2009a10adbc05daa394f3821cb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Artificial neural networks</topic><topic>Carcasses</topic><topic>Coastal Sciences</topic><topic>Compression</topic><topic>Deformation</topic><topic>Displacement</topic><topic>Elastic deformation</topic><topic>Engineering</topic><topic>Equivalence</topic><topic>Experimental data</topic><topic>Flexible pipes</topic><topic>Fluid- and Aerodynamics</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Mechanical properties</topic><topic>Neural networks</topic><topic>Numerical and Computational Physics</topic><topic>Oceanography</topic><topic>Offshore Engineering</topic><topic>Original Paper</topic><topic>Plastic deformation</topic><topic>Plastics</topic><topic>Simulation</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Jun</creatorcontrib><creatorcontrib>Li, Wen-bo</creatorcontrib><creatorcontrib>Vaz, Murilo Augusto</creatorcontrib><creatorcontrib>Lu, Hai-long</creatorcontrib><creatorcontrib>Zhang, Heng-rui</creatorcontrib><creatorcontrib>Du, Hong-ze</creatorcontrib><creatorcontrib>Bu, Yu-feng</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>China ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Jun</au><au>Li, Wen-bo</au><au>Vaz, Murilo Augusto</au><au>Lu, Hai-long</au><au>Zhang, Heng-rui</au><au>Du, Hong-ze</au><au>Bu, Yu-feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of Load—Displacement Curve of Flexible Pipe Carcass Under Radial Compression Based on Residual Neural Network</atitle><jtitle>China ocean engineering</jtitle><stitle>China Ocean Eng</stitle><date>2023-02-01</date><risdate>2023</risdate><volume>37</volume><issue>1</issue><spage>42</spage><epage>52</epage><pages>42-52</pages><issn>0890-5487</issn><eissn>2191-8945</eissn><abstract>The carcass layer of flexible pipe comprises a large-angle spiral structure with a complex interlocked stainless steel cross-section profile, which is mainly used to resist radial load. With the complex structure of the carcass layer, an equivalent simplified model is used to study the mechanical properties of the carcass layer. However, the current equivalent carcass model only considers the elastic deformation, and this simplification leads to huge errors in the calculation results. In this study, radial compression experiments were carried out to make the carcasses to undergo plastic deformation. Subsequently, a residual neural network based on the experimental data was established to predict the load–displacement curves of carcasses with different inner diameter in plastic states under radial compression. The established neural network model’s high precision was verified by experimental data, and the influence of the number of input variables on the accuracy of the neural network was discussed. The conclusion shows that the residual neural network model established based on the experimental data of the small-diameter carcass layer can predict the load–displacement curve of the large-diameter carcass layer in the plastic stage. With the decrease of input data, the prediction accuracy of residual network model in plasticity stage will decrease.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13344-023-0004-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-5487
ispartof China ocean engineering, 2023-02, Vol.37 (1), p.42-52
issn 0890-5487
2191-8945
language eng
recordid cdi_wanfang_journals_zghygc_e202301004
source Springer Link
subjects Accuracy
Artificial neural networks
Carcasses
Coastal Sciences
Compression
Deformation
Displacement
Elastic deformation
Engineering
Equivalence
Experimental data
Flexible pipes
Fluid- and Aerodynamics
Marine & Freshwater Sciences
Mechanical properties
Neural networks
Numerical and Computational Physics
Oceanography
Offshore Engineering
Original Paper
Plastic deformation
Plastics
Simulation
Stainless steel
Stainless steels
title Prediction of Load—Displacement Curve of Flexible Pipe Carcass Under Radial Compression Based on Residual Neural Network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A39%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20Load%E2%80%94Displacement%20Curve%20of%20Flexible%20Pipe%20Carcass%20Under%20Radial%20Compression%20Based%20on%20Residual%20Neural%20Network&rft.jtitle=China%20ocean%20engineering&rft.au=Yan,%20Jun&rft.date=2023-02-01&rft.volume=37&rft.issue=1&rft.spage=42&rft.epage=52&rft.pages=42-52&rft.issn=0890-5487&rft.eissn=2191-8945&rft_id=info:doi/10.1007/s13344-023-0004-8&rft_dat=%3Cwanfang_jour_proqu%3Ezghygc_e202301004%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c393t-8bffcc4497d4a41d73464ce1eb1afb082a7e2009a10adbc05daa394f3821cb7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2791649120&rft_id=info:pmid/&rft_wanfj_id=zghygc_e202301004&rfr_iscdi=true