Loading…

A Detail Investigation on the Antarctic Wind Energy

The scientific development of wind energy based on local conditions is conducive to the urgent energy demand and environmental protection of Antarctic region. In this study, the ERA5 reanalysis data are used to evaluate the wind energy resources in the Antarctic region. A series of key indicators, s...

Full description

Saved in:
Bibliographic Details
Published in:China ocean engineering 2023-08, Vol.37 (4), p.698-708
Main Authors: Wang, Kai-shan, Wu, Di, Zheng, Chong-wei, Tao, Gui-sheng, Li, Wei, Gao, Yuan-bo, Yu, Yue, Wu, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c302t-3dd0effe7b6e07e7bfee4ae514aefaf203db49fbe6ef5c89149c7e8fbfe339603
container_end_page 708
container_issue 4
container_start_page 698
container_title China ocean engineering
container_volume 37
creator Wang, Kai-shan
Wu, Di
Zheng, Chong-wei
Tao, Gui-sheng
Li, Wei
Gao, Yuan-bo
Yu, Yue
Wu, Kai
description The scientific development of wind energy based on local conditions is conducive to the urgent energy demand and environmental protection of Antarctic region. In this study, the ERA5 reanalysis data are used to evaluate the wind energy resources in the Antarctic region. A series of key indicators, such as wind power density, effective wind speed occurrence, energy level occurrence and stability, are comprehensively considered by using climate statistical analysis methods to analyze the temporal and spatial distribution characteristics of Antarctic wind energy resources. The results show that the Antarctic region contains abundant wind energy resources, which benefits the construction of scientific research stations. The superior areas are the Southern Ocean and the coast of the East Antarctica, followed by the Transantarctic Mountains, the coast of the Bellingshausen Sea and Amundsen Sea. These areas have advantages in terms of wind power density (500–2500 W/m 2 ), effective wind speed occurrence (80%–90%), energy level occurrence (60%–90%) and stability ( C v : 0.6–1, M v : 1.2–1.8, S v : 0.8–1.2). The Antarctic’s wind energy resources in wind power density, effective wind speed occurrence and energy level occurrence in autumn and winter are better than those in summer, while the coefficient of variation in summer is worse than that in autumn and winter.
doi_str_mv 10.1007/s13344-023-0059-6
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zghygc_e202304015</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zghygc_e202304015</wanfj_id><sourcerecordid>zghygc_e202304015</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-3dd0effe7b6e07e7bfee4ae514aefaf203db49fbe6ef5c89149c7e8fbfe339603</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwNuCJw_Ryb_dzbHUqoWCF8VjSHcn2y01W5OtUj-9KSv0JAwzl997w3uEXDO4YwDFfWRCSEmBCwqgNM1PyIgzzWippTolIyg1UCXL4pxcxLhODFOSjYiYZA_Y23aTzf0Xxr5tbN92PkvTrzCb-N6Gqm-r7L31dTbzGJr9JTlzdhPx6u-Oydvj7HX6TBcvT_PpZEErAbynoq4BncNimSMU6ThEaVGxtJx1HES9lNotMUenqlIzqasCS5c4IXQOYkxuB99v6531jVl3u-DTR_PTrPZNZZCnvCCBqcTeDOw2dJ-7FOQI8zJXgkuWi0SxgapCF2NAZ7ah_bBhbxiYQ49m6NEkX3Po0eRJwwdNTKxvMByd_xf9AmXRdNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2865324163</pqid></control><display><type>article</type><title>A Detail Investigation on the Antarctic Wind Energy</title><source>Springer Nature</source><creator>Wang, Kai-shan ; Wu, Di ; Zheng, Chong-wei ; Tao, Gui-sheng ; Li, Wei ; Gao, Yuan-bo ; Yu, Yue ; Wu, Kai</creator><creatorcontrib>Wang, Kai-shan ; Wu, Di ; Zheng, Chong-wei ; Tao, Gui-sheng ; Li, Wei ; Gao, Yuan-bo ; Yu, Yue ; Wu, Kai</creatorcontrib><description>The scientific development of wind energy based on local conditions is conducive to the urgent energy demand and environmental protection of Antarctic region. In this study, the ERA5 reanalysis data are used to evaluate the wind energy resources in the Antarctic region. A series of key indicators, such as wind power density, effective wind speed occurrence, energy level occurrence and stability, are comprehensively considered by using climate statistical analysis methods to analyze the temporal and spatial distribution characteristics of Antarctic wind energy resources. The results show that the Antarctic region contains abundant wind energy resources, which benefits the construction of scientific research stations. The superior areas are the Southern Ocean and the coast of the East Antarctica, followed by the Transantarctic Mountains, the coast of the Bellingshausen Sea and Amundsen Sea. These areas have advantages in terms of wind power density (500–2500 W/m 2 ), effective wind speed occurrence (80%–90%), energy level occurrence (60%–90%) and stability ( C v : 0.6–1, M v : 1.2–1.8, S v : 0.8–1.2). The Antarctic’s wind energy resources in wind power density, effective wind speed occurrence and energy level occurrence in autumn and winter are better than those in summer, while the coefficient of variation in summer is worse than that in autumn and winter.</description><identifier>ISSN: 0890-5487</identifier><identifier>EISSN: 2191-8945</identifier><identifier>DOI: 10.1007/s13344-023-0059-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Antarctic zone ; Autumn ; Coastal Sciences ; Coefficient of variation ; Density ; Energy demand ; Energy levels ; Energy resources ; Energy sources ; Engineering ; Environmental protection ; Fluid- and Aerodynamics ; Marine &amp; Freshwater Sciences ; Mountains ; Numerical and Computational Physics ; Oceanography ; Offshore Engineering ; Simulation ; Spatial distribution ; Stability analysis ; Statistical analysis ; Statistical methods ; Summer ; Wind power ; Wind speed ; Winter</subject><ispartof>China ocean engineering, 2023-08, Vol.37 (4), p.698-708</ispartof><rights>Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023</rights><rights>Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c302t-3dd0effe7b6e07e7bfee4ae514aefaf203db49fbe6ef5c89149c7e8fbfe339603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zghygc-e/zghygc-e.jpg</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, Kai-shan</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Zheng, Chong-wei</creatorcontrib><creatorcontrib>Tao, Gui-sheng</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Gao, Yuan-bo</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><title>A Detail Investigation on the Antarctic Wind Energy</title><title>China ocean engineering</title><addtitle>China Ocean Eng</addtitle><description>The scientific development of wind energy based on local conditions is conducive to the urgent energy demand and environmental protection of Antarctic region. In this study, the ERA5 reanalysis data are used to evaluate the wind energy resources in the Antarctic region. A series of key indicators, such as wind power density, effective wind speed occurrence, energy level occurrence and stability, are comprehensively considered by using climate statistical analysis methods to analyze the temporal and spatial distribution characteristics of Antarctic wind energy resources. The results show that the Antarctic region contains abundant wind energy resources, which benefits the construction of scientific research stations. The superior areas are the Southern Ocean and the coast of the East Antarctica, followed by the Transantarctic Mountains, the coast of the Bellingshausen Sea and Amundsen Sea. These areas have advantages in terms of wind power density (500–2500 W/m 2 ), effective wind speed occurrence (80%–90%), energy level occurrence (60%–90%) and stability ( C v : 0.6–1, M v : 1.2–1.8, S v : 0.8–1.2). The Antarctic’s wind energy resources in wind power density, effective wind speed occurrence and energy level occurrence in autumn and winter are better than those in summer, while the coefficient of variation in summer is worse than that in autumn and winter.</description><subject>Antarctic zone</subject><subject>Autumn</subject><subject>Coastal Sciences</subject><subject>Coefficient of variation</subject><subject>Density</subject><subject>Energy demand</subject><subject>Energy levels</subject><subject>Energy resources</subject><subject>Energy sources</subject><subject>Engineering</subject><subject>Environmental protection</subject><subject>Fluid- and Aerodynamics</subject><subject>Marine &amp; Freshwater Sciences</subject><subject>Mountains</subject><subject>Numerical and Computational Physics</subject><subject>Oceanography</subject><subject>Offshore Engineering</subject><subject>Simulation</subject><subject>Spatial distribution</subject><subject>Stability analysis</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Summer</subject><subject>Wind power</subject><subject>Wind speed</subject><subject>Winter</subject><issn>0890-5487</issn><issn>2191-8945</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwNuCJw_Ryb_dzbHUqoWCF8VjSHcn2y01W5OtUj-9KSv0JAwzl997w3uEXDO4YwDFfWRCSEmBCwqgNM1PyIgzzWippTolIyg1UCXL4pxcxLhODFOSjYiYZA_Y23aTzf0Xxr5tbN92PkvTrzCb-N6Gqm-r7L31dTbzGJr9JTlzdhPx6u-Oydvj7HX6TBcvT_PpZEErAbynoq4BncNimSMU6ThEaVGxtJx1HES9lNotMUenqlIzqasCS5c4IXQOYkxuB99v6531jVl3u-DTR_PTrPZNZZCnvCCBqcTeDOw2dJ-7FOQI8zJXgkuWi0SxgapCF2NAZ7ah_bBhbxiYQ49m6NEkX3Po0eRJwwdNTKxvMByd_xf9AmXRdNQ</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Wang, Kai-shan</creator><creator>Wu, Di</creator><creator>Zheng, Chong-wei</creator><creator>Tao, Gui-sheng</creator><creator>Li, Wei</creator><creator>Gao, Yuan-bo</creator><creator>Yu, Yue</creator><creator>Wu, Kai</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Marine Resources and Environment Research Group on the Maritime Silk Road,Dalian 116018,China%Dalian Naval Academy,Dalian 116018,China</general><general>Dalian Naval Academy,Dalian 116018,China</general><general>Marine Resources and Environment Research Group on the Maritime Silk Road,Dalian 116018,China</general><general>Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai),Zhuhai 519082,China%Dalian Naval Academy,Dalian 116018,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230801</creationdate><title>A Detail Investigation on the Antarctic Wind Energy</title><author>Wang, Kai-shan ; Wu, Di ; Zheng, Chong-wei ; Tao, Gui-sheng ; Li, Wei ; Gao, Yuan-bo ; Yu, Yue ; Wu, Kai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-3dd0effe7b6e07e7bfee4ae514aefaf203db49fbe6ef5c89149c7e8fbfe339603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Antarctic zone</topic><topic>Autumn</topic><topic>Coastal Sciences</topic><topic>Coefficient of variation</topic><topic>Density</topic><topic>Energy demand</topic><topic>Energy levels</topic><topic>Energy resources</topic><topic>Energy sources</topic><topic>Engineering</topic><topic>Environmental protection</topic><topic>Fluid- and Aerodynamics</topic><topic>Marine &amp; Freshwater Sciences</topic><topic>Mountains</topic><topic>Numerical and Computational Physics</topic><topic>Oceanography</topic><topic>Offshore Engineering</topic><topic>Simulation</topic><topic>Spatial distribution</topic><topic>Stability analysis</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Summer</topic><topic>Wind power</topic><topic>Wind speed</topic><topic>Winter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Kai-shan</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Zheng, Chong-wei</creatorcontrib><creatorcontrib>Tao, Gui-sheng</creatorcontrib><creatorcontrib>Li, Wei</creatorcontrib><creatorcontrib>Gao, Yuan-bo</creatorcontrib><creatorcontrib>Yu, Yue</creatorcontrib><creatorcontrib>Wu, Kai</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>China ocean engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Kai-shan</au><au>Wu, Di</au><au>Zheng, Chong-wei</au><au>Tao, Gui-sheng</au><au>Li, Wei</au><au>Gao, Yuan-bo</au><au>Yu, Yue</au><au>Wu, Kai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Detail Investigation on the Antarctic Wind Energy</atitle><jtitle>China ocean engineering</jtitle><stitle>China Ocean Eng</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>37</volume><issue>4</issue><spage>698</spage><epage>708</epage><pages>698-708</pages><issn>0890-5487</issn><eissn>2191-8945</eissn><abstract>The scientific development of wind energy based on local conditions is conducive to the urgent energy demand and environmental protection of Antarctic region. In this study, the ERA5 reanalysis data are used to evaluate the wind energy resources in the Antarctic region. A series of key indicators, such as wind power density, effective wind speed occurrence, energy level occurrence and stability, are comprehensively considered by using climate statistical analysis methods to analyze the temporal and spatial distribution characteristics of Antarctic wind energy resources. The results show that the Antarctic region contains abundant wind energy resources, which benefits the construction of scientific research stations. The superior areas are the Southern Ocean and the coast of the East Antarctica, followed by the Transantarctic Mountains, the coast of the Bellingshausen Sea and Amundsen Sea. These areas have advantages in terms of wind power density (500–2500 W/m 2 ), effective wind speed occurrence (80%–90%), energy level occurrence (60%–90%) and stability ( C v : 0.6–1, M v : 1.2–1.8, S v : 0.8–1.2). The Antarctic’s wind energy resources in wind power density, effective wind speed occurrence and energy level occurrence in autumn and winter are better than those in summer, while the coefficient of variation in summer is worse than that in autumn and winter.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s13344-023-0059-6</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0890-5487
ispartof China ocean engineering, 2023-08, Vol.37 (4), p.698-708
issn 0890-5487
2191-8945
language eng
recordid cdi_wanfang_journals_zghygc_e202304015
source Springer Nature
subjects Antarctic zone
Autumn
Coastal Sciences
Coefficient of variation
Density
Energy demand
Energy levels
Energy resources
Energy sources
Engineering
Environmental protection
Fluid- and Aerodynamics
Marine & Freshwater Sciences
Mountains
Numerical and Computational Physics
Oceanography
Offshore Engineering
Simulation
Spatial distribution
Stability analysis
Statistical analysis
Statistical methods
Summer
Wind power
Wind speed
Winter
title A Detail Investigation on the Antarctic Wind Energy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T18%3A21%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Detail%20Investigation%20on%20the%20Antarctic%20Wind%20Energy&rft.jtitle=China%20ocean%20engineering&rft.au=Wang,%20Kai-shan&rft.date=2023-08-01&rft.volume=37&rft.issue=4&rft.spage=698&rft.epage=708&rft.pages=698-708&rft.issn=0890-5487&rft.eissn=2191-8945&rft_id=info:doi/10.1007/s13344-023-0059-6&rft_dat=%3Cwanfang_jour_proqu%3Ezghygc_e202304015%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c302t-3dd0effe7b6e07e7bfee4ae514aefaf203db49fbe6ef5c89149c7e8fbfe339603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2865324163&rft_id=info:pmid/&rft_wanfj_id=zghygc_e202304015&rfr_iscdi=true