Loading…
Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal
Coal is the world's most abundant fossil fuel. Coal froth flotation is a widely used cleaning process to separate coal from mineral impurities. Flotation of coarse coal particles, ultrafine coal particles and oxidized coal particles is well known to be difficult and complex. In this paper, the...
Saved in:
Published in: | Mining science and technology (China) 2010-09, Vol.20 (5), p.641-671 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2921-f5816b951d581e91e0b417341a716726f75337cc9206cea2f55f9274bdd6e4f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c2921-f5816b951d581e91e0b417341a716726f75337cc9206cea2f55f9274bdd6e4f13 |
container_end_page | 671 |
container_issue | 5 |
container_start_page | 641 |
container_title | Mining science and technology (China) |
container_volume | 20 |
creator | FAN, Maoming TAO, Daniel HONAKER, Rick LUO, Zhenfu |
description | Coal is the world's most abundant fossil fuel. Coal froth flotation is a widely used cleaning process to separate coal from mineral impurities. Flotation of coarse coal particles, ultrafine coal particles and oxidized coal particles is well known to be difficult and complex. In this paper, the nanobubbles' effects on the flotation of the varying particle size, particle density and floatability coal samples were evaluated using a bank of pilot scale flotation cells, a laboratory scale and a pilot scale specially designed flotation column. The parameters evaluated during this study include the flow rate ratio between the nanobubble generator and the conventional size bubble generator, the superficial air velocity, collector dosage, frother concentration, flotation feed rate, feed solids concentration, feed particle size, and the superficial wash water flow rate, etc. The results show that the use of nanobubbles in a bank of mechanical cells flotation and column flotation increased the flotation recovery by 8%∼27% at a given product grade. Nanobubbles increased the flotation rate constants of 600∼355, 355∼180, 180∼75, and 75∼0 microns size coal particles by 98.0%, 98.4%, 50.0% and 41.6%, respectively. The separation selectivity index was increased by up to 34%, depending on the flotation feed characteristics and the flotation conditions. |
doi_str_mv | 10.1016/S1674-5264(09)60259-3 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zgkydxxb_e201005001</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgkydxxb_e201005001</wanfj_id><els_id>S1674526409602593</els_id><sourcerecordid>zgkydxxb_e201005001</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2921-f5816b951d581e91e0b417341a716726f75337cc9206cea2f55f9274bdd6e4f13</originalsourceid><addsrcrecordid>eNqFkc9u1DAQxiMEEqvSR0DyjVYoxXZsJ-aCUAWlUgUH_lwtxx5vXbx2sBPo8ga8Nd4NQtyYy4xGv_lGn76meUrwBcFEvPhIRM9aTgU7w_JcYMpl2z1oNpQS2gosxMNm8xd53JyWcodrdcMgybBpfr3XMY3LOAZAW4iQ9exTRDpa5OeC9DQFb467gnxELqf5FrmQ5pU7m3Se0fWX85doB-ZWxwoHZCCEctQoExivQ9gjC8VvI1hkUlh28R-N5OpOhyfNI6dDgdM__aT5_PbNp8t37c2Hq-vL1zetoZKS1vGBiFFyYusAkgAeGek7RnRfbVLhet51vTGSYmFAU8e5k7Rno7UCmCPdSfN81f2ho9Nxq-7SkmP9qH5uv-7t_f2ogGKCMcf4QD9b6SmnbwuUWe18OfjTEdJS1MAkG4ZOsErylTQ5lZLBqSn7nc57RbA6RKWOUalDDgpLdYxKdfXu1XoH1fR3D1kV4yEasD6DmZVN_j8KvwGT-5vy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849488364</pqid></control><display><type>article</type><title>Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal</title><source>Elsevier</source><creator>FAN, Maoming ; TAO, Daniel ; HONAKER, Rick ; LUO, Zhenfu</creator><creatorcontrib>FAN, Maoming ; TAO, Daniel ; HONAKER, Rick ; LUO, Zhenfu</creatorcontrib><description>Coal is the world's most abundant fossil fuel. Coal froth flotation is a widely used cleaning process to separate coal from mineral impurities. Flotation of coarse coal particles, ultrafine coal particles and oxidized coal particles is well known to be difficult and complex. In this paper, the nanobubbles' effects on the flotation of the varying particle size, particle density and floatability coal samples were evaluated using a bank of pilot scale flotation cells, a laboratory scale and a pilot scale specially designed flotation column. The parameters evaluated during this study include the flow rate ratio between the nanobubble generator and the conventional size bubble generator, the superficial air velocity, collector dosage, frother concentration, flotation feed rate, feed solids concentration, feed particle size, and the superficial wash water flow rate, etc. The results show that the use of nanobubbles in a bank of mechanical cells flotation and column flotation increased the flotation recovery by 8%∼27% at a given product grade. Nanobubbles increased the flotation rate constants of 600∼355, 355∼180, 180∼75, and 75∼0 microns size coal particles by 98.0%, 98.4%, 50.0% and 41.6%, respectively. The separation selectivity index was increased by up to 34%, depending on the flotation feed characteristics and the flotation conditions.</description><identifier>ISSN: 1674-5264</identifier><identifier>EISSN: 2212-6066</identifier><identifier>DOI: 10.1016/S1674-5264(09)60259-3</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>cavitation ; Coal ; Coal mines ; Density ; Flotation ; flotation kinetics ; froth flotation ; Generators ; nanobubble ; Nanocomposites ; Nanomaterials ; Nanostructure</subject><ispartof>Mining science and technology (China), 2010-09, Vol.20 (5), p.641-671</ispartof><rights>2010 China University of Mining and Technology</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2921-f5816b951d581e91e0b417341a716726f75337cc9206cea2f55f9274bdd6e4f13</citedby><cites>FETCH-LOGICAL-c2921-f5816b951d581e91e0b417341a716726f75337cc9206cea2f55f9274bdd6e4f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgkydxxb-e/zgkydxxb-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>FAN, Maoming</creatorcontrib><creatorcontrib>TAO, Daniel</creatorcontrib><creatorcontrib>HONAKER, Rick</creatorcontrib><creatorcontrib>LUO, Zhenfu</creatorcontrib><title>Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal</title><title>Mining science and technology (China)</title><description>Coal is the world's most abundant fossil fuel. Coal froth flotation is a widely used cleaning process to separate coal from mineral impurities. Flotation of coarse coal particles, ultrafine coal particles and oxidized coal particles is well known to be difficult and complex. In this paper, the nanobubbles' effects on the flotation of the varying particle size, particle density and floatability coal samples were evaluated using a bank of pilot scale flotation cells, a laboratory scale and a pilot scale specially designed flotation column. The parameters evaluated during this study include the flow rate ratio between the nanobubble generator and the conventional size bubble generator, the superficial air velocity, collector dosage, frother concentration, flotation feed rate, feed solids concentration, feed particle size, and the superficial wash water flow rate, etc. The results show that the use of nanobubbles in a bank of mechanical cells flotation and column flotation increased the flotation recovery by 8%∼27% at a given product grade. Nanobubbles increased the flotation rate constants of 600∼355, 355∼180, 180∼75, and 75∼0 microns size coal particles by 98.0%, 98.4%, 50.0% and 41.6%, respectively. The separation selectivity index was increased by up to 34%, depending on the flotation feed characteristics and the flotation conditions.</description><subject>cavitation</subject><subject>Coal</subject><subject>Coal mines</subject><subject>Density</subject><subject>Flotation</subject><subject>flotation kinetics</subject><subject>froth flotation</subject><subject>Generators</subject><subject>nanobubble</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><issn>1674-5264</issn><issn>2212-6066</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc9u1DAQxiMEEqvSR0DyjVYoxXZsJ-aCUAWlUgUH_lwtxx5vXbx2sBPo8ga8Nd4NQtyYy4xGv_lGn76meUrwBcFEvPhIRM9aTgU7w_JcYMpl2z1oNpQS2gosxMNm8xd53JyWcodrdcMgybBpfr3XMY3LOAZAW4iQ9exTRDpa5OeC9DQFb467gnxELqf5FrmQ5pU7m3Se0fWX85doB-ZWxwoHZCCEctQoExivQ9gjC8VvI1hkUlh28R-N5OpOhyfNI6dDgdM__aT5_PbNp8t37c2Hq-vL1zetoZKS1vGBiFFyYusAkgAeGek7RnRfbVLhet51vTGSYmFAU8e5k7Rno7UCmCPdSfN81f2ho9Nxq-7SkmP9qH5uv-7t_f2ogGKCMcf4QD9b6SmnbwuUWe18OfjTEdJS1MAkG4ZOsErylTQ5lZLBqSn7nc57RbA6RKWOUalDDgpLdYxKdfXu1XoH1fR3D1kV4yEasD6DmZVN_j8KvwGT-5vy</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>FAN, Maoming</creator><creator>TAO, Daniel</creator><creator>HONAKER, Rick</creator><creator>LUO, Zhenfu</creator><general>Elsevier B.V</general><general>CPT, Eriez Manufacturing Co, Erie PA 16514, USA%Department of Mining Engineering, University of Kentucky, Lexington KY 40506, USA%School of Chemical Engineering and Technology, China University of Mining & Technology, Xuzhou 221116, China</general><general>Department of Mining Engineering, University of Kentucky, Lexington KY 40506, USA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>201009</creationdate><title>Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal</title><author>FAN, Maoming ; TAO, Daniel ; HONAKER, Rick ; LUO, Zhenfu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2921-f5816b951d581e91e0b417341a716726f75337cc9206cea2f55f9274bdd6e4f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>cavitation</topic><topic>Coal</topic><topic>Coal mines</topic><topic>Density</topic><topic>Flotation</topic><topic>flotation kinetics</topic><topic>froth flotation</topic><topic>Generators</topic><topic>nanobubble</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><toplevel>online_resources</toplevel><creatorcontrib>FAN, Maoming</creatorcontrib><creatorcontrib>TAO, Daniel</creatorcontrib><creatorcontrib>HONAKER, Rick</creatorcontrib><creatorcontrib>LUO, Zhenfu</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Mining science and technology (China)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>FAN, Maoming</au><au>TAO, Daniel</au><au>HONAKER, Rick</au><au>LUO, Zhenfu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal</atitle><jtitle>Mining science and technology (China)</jtitle><date>2010-09</date><risdate>2010</risdate><volume>20</volume><issue>5</issue><spage>641</spage><epage>671</epage><pages>641-671</pages><issn>1674-5264</issn><eissn>2212-6066</eissn><abstract>Coal is the world's most abundant fossil fuel. Coal froth flotation is a widely used cleaning process to separate coal from mineral impurities. Flotation of coarse coal particles, ultrafine coal particles and oxidized coal particles is well known to be difficult and complex. In this paper, the nanobubbles' effects on the flotation of the varying particle size, particle density and floatability coal samples were evaluated using a bank of pilot scale flotation cells, a laboratory scale and a pilot scale specially designed flotation column. The parameters evaluated during this study include the flow rate ratio between the nanobubble generator and the conventional size bubble generator, the superficial air velocity, collector dosage, frother concentration, flotation feed rate, feed solids concentration, feed particle size, and the superficial wash water flow rate, etc. The results show that the use of nanobubbles in a bank of mechanical cells flotation and column flotation increased the flotation recovery by 8%∼27% at a given product grade. Nanobubbles increased the flotation rate constants of 600∼355, 355∼180, 180∼75, and 75∼0 microns size coal particles by 98.0%, 98.4%, 50.0% and 41.6%, respectively. The separation selectivity index was increased by up to 34%, depending on the flotation feed characteristics and the flotation conditions.</abstract><pub>Elsevier B.V</pub><doi>10.1016/S1674-5264(09)60259-3</doi><tpages>31</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-5264 |
ispartof | Mining science and technology (China), 2010-09, Vol.20 (5), p.641-671 |
issn | 1674-5264 2212-6066 |
language | eng |
recordid | cdi_wanfang_journals_zgkydxxb_e201005001 |
source | Elsevier |
subjects | cavitation Coal Coal mines Density Flotation flotation kinetics froth flotation Generators nanobubble Nanocomposites Nanomaterials Nanostructure |
title | Nanobubble generation and its applications in froth flotation (part IV): mechanical cells and specially designed column flotation of coal |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T06%3A15%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanobubble%20generation%20and%20its%20applications%20in%20froth%20flotation%20(part%20IV):%20mechanical%20cells%20and%20specially%20designed%20column%20flotation%20of%20coal&rft.jtitle=Mining%20science%20and%20technology%20(China)&rft.au=FAN,%20Maoming&rft.date=2010-09&rft.volume=20&rft.issue=5&rft.spage=641&rft.epage=671&rft.pages=641-671&rft.issn=1674-5264&rft.eissn=2212-6066&rft_id=info:doi/10.1016/S1674-5264(09)60259-3&rft_dat=%3Cwanfang_jour_proqu%3Ezgkydxxb_e201005001%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2921-f5816b951d581e91e0b417341a716726f75337cc9206cea2f55f9274bdd6e4f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849488364&rft_id=info:pmid/&rft_wanfj_id=zgkydxxb_e201005001&rfr_iscdi=true |