Loading…

Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert–Schmidt distance

Non-Gaussianity of quantum states is a very important source for quantum information technology and can be quantified by using the known squared Hilbert–Schmidt distance recently introduced by Genoni et al. ( Phys. Rev. A 78 042327 (2007)). It is, however, shown that such a measure has many imperfec...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2023-05, Vol.32 (5), p.50309-343
Main Authors: Xiang, Shaohua, Li, Shanshan, Mi, Xianwu
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c344t-6d6be6343f7bfeed7cf8ee2f9d3996688a0cd63643ae8161e750bd6dda9d25093
cites cdi_FETCH-LOGICAL-c344t-6d6be6343f7bfeed7cf8ee2f9d3996688a0cd63643ae8161e750bd6dda9d25093
container_end_page 343
container_issue 5
container_start_page 50309
container_title Chinese physics B
container_volume 32
creator Xiang, Shaohua
Li, Shanshan
Mi, Xianwu
description Non-Gaussianity of quantum states is a very important source for quantum information technology and can be quantified by using the known squared Hilbert–Schmidt distance recently introduced by Genoni et al. ( Phys. Rev. A 78 042327 (2007)). It is, however, shown that such a measure has many imperfects such as the lack of the swapping symmetry and the ineffectiveness evaluation of even Schrödinger-cat-like states with small amplitudes. To deal with these difficulties, we propose an improved measure of non-Gaussianity for quantum states and discuss its properties in detail. We then exploit this improved measure to evaluate the non-Gaussianities of some relevant single-mode non-Gaussian states and multi-mode non-Gaussian entangled states. These results show that our measure is reliable. We also introduce a modified measure for Gaussianity following Mandilara and Cerf ( Phys. Rev. A 86 030102(R) (2012)) and establish a conservation relation of non-Gaussianity and Gaussianity of a quantum state.
doi_str_mv 10.1088/1674-1056/acb0bd
format article
fullrecord <record><control><sourceid>wanfang_jour_cross</sourceid><recordid>TN_cdi_wanfang_journals_zgwl_e202305037</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zgwl_e202305037</wanfj_id><sourcerecordid>zgwl_e202305037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-6d6be6343f7bfeed7cf8ee2f9d3996688a0cd63643ae8161e750bd6dda9d25093</originalsourceid><addsrcrecordid>eNp1kLtOwzAUQDOARHnsjN5YCHXixElGVKBFqsQAzJYTXxdXiR3spFU7wTfwh3wJjoooA0zWtc49lk8QnEf4KsJ5Po5oloQRTumYVyUuxUEw-rk6Co6dW2JMIxyTUfB-AyuoTav0AqmmtWYFAjXAXW_BISORNjqc8t45xbXqNohrgX7P0lj02nPd9Q1yHe_8Vsmdlxjtd23Da7X100zVJdju8-3jsXpplOiQUB7XFZwGh5LXDs6-z5Pg-e72aTIL5w_T-8n1PKxIknQhFbQEShIis1ICiKySOUAsC0GKgtI857gSlNCEcMgjGkGW-p9TIXgh4hQX5CS42HnXXEuuF2xpeqv9i2y7WNcMYt8Dp5hknsQ7srLGOQuStVY13G5YhNkQmA012VCT7QLv5cq0e3HVlozELGWDFxesFdKTl3-Q_4q_AFnskTk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert–Schmidt distance</title><source>Institute of Physics</source><creator>Xiang, Shaohua ; Li, Shanshan ; Mi, Xianwu</creator><creatorcontrib>Xiang, Shaohua ; Li, Shanshan ; Mi, Xianwu</creatorcontrib><description>Non-Gaussianity of quantum states is a very important source for quantum information technology and can be quantified by using the known squared Hilbert–Schmidt distance recently introduced by Genoni et al. ( Phys. Rev. A 78 042327 (2007)). It is, however, shown that such a measure has many imperfects such as the lack of the swapping symmetry and the ineffectiveness evaluation of even Schrödinger-cat-like states with small amplitudes. To deal with these difficulties, we propose an improved measure of non-Gaussianity for quantum states and discuss its properties in detail. We then exploit this improved measure to evaluate the non-Gaussianities of some relevant single-mode non-Gaussian states and multi-mode non-Gaussian entangled states. These results show that our measure is reliable. We also introduce a modified measure for Gaussianity following Mandilara and Cerf ( Phys. Rev. A 86 030102(R) (2012)) and establish a conservation relation of non-Gaussianity and Gaussianity of a quantum state.</description><identifier>ISSN: 1674-1056</identifier><identifier>DOI: 10.1088/1674-1056/acb0bd</identifier><language>eng</language><publisher>Chinese Physical Society and IOP Publishing Ltd</publisher><subject>non-Gaussian states ; non-Gaussianity measure ; phase-space distribution function</subject><ispartof>Chinese physics B, 2023-05, Vol.32 (5), p.50309-343</ispartof><rights>2023 Chinese Physical Society and IOP Publishing Ltd</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-6d6be6343f7bfeed7cf8ee2f9d3996688a0cd63643ae8161e750bd6dda9d25093</citedby><cites>FETCH-LOGICAL-c344t-6d6be6343f7bfeed7cf8ee2f9d3996688a0cd63643ae8161e750bd6dda9d25093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zgwl-e/zgwl-e.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xiang, Shaohua</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Mi, Xianwu</creatorcontrib><title>Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert–Schmidt distance</title><title>Chinese physics B</title><addtitle>Chin. Phys. B</addtitle><description>Non-Gaussianity of quantum states is a very important source for quantum information technology and can be quantified by using the known squared Hilbert–Schmidt distance recently introduced by Genoni et al. ( Phys. Rev. A 78 042327 (2007)). It is, however, shown that such a measure has many imperfects such as the lack of the swapping symmetry and the ineffectiveness evaluation of even Schrödinger-cat-like states with small amplitudes. To deal with these difficulties, we propose an improved measure of non-Gaussianity for quantum states and discuss its properties in detail. We then exploit this improved measure to evaluate the non-Gaussianities of some relevant single-mode non-Gaussian states and multi-mode non-Gaussian entangled states. These results show that our measure is reliable. We also introduce a modified measure for Gaussianity following Mandilara and Cerf ( Phys. Rev. A 86 030102(R) (2012)) and establish a conservation relation of non-Gaussianity and Gaussianity of a quantum state.</description><subject>non-Gaussian states</subject><subject>non-Gaussianity measure</subject><subject>phase-space distribution function</subject><issn>1674-1056</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUQDOARHnsjN5YCHXixElGVKBFqsQAzJYTXxdXiR3spFU7wTfwh3wJjoooA0zWtc49lk8QnEf4KsJ5Po5oloQRTumYVyUuxUEw-rk6Co6dW2JMIxyTUfB-AyuoTav0AqmmtWYFAjXAXW_BISORNjqc8t45xbXqNohrgX7P0lj02nPd9Q1yHe_8Vsmdlxjtd23Da7X100zVJdju8-3jsXpplOiQUB7XFZwGh5LXDs6-z5Pg-e72aTIL5w_T-8n1PKxIknQhFbQEShIis1ICiKySOUAsC0GKgtI857gSlNCEcMgjGkGW-p9TIXgh4hQX5CS42HnXXEuuF2xpeqv9i2y7WNcMYt8Dp5hknsQ7srLGOQuStVY13G5YhNkQmA012VCT7QLv5cq0e3HVlozELGWDFxesFdKTl3-Q_4q_AFnskTk</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Xiang, Shaohua</creator><creator>Li, Shanshan</creator><creator>Mi, Xianwu</creator><general>Chinese Physical Society and IOP Publishing Ltd</general><general>Hunan Provincial Key Laboratory of Ecological Agriculture Intelligent Control Technology,Huaihua 418008,China</general><general>Research Center for Information Technological Innovation,Huaihua University,Huaihua 418008,China%College of Physics,Electronics and Intelligent Manufacturing,Huaihua University,Huaihua 418008,China</general><general>College of Physics,Electronics and Intelligent Manufacturing,Huaihua University,Huaihua 418008,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope></search><sort><creationdate>20230501</creationdate><title>Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert–Schmidt distance</title><author>Xiang, Shaohua ; Li, Shanshan ; Mi, Xianwu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-6d6be6343f7bfeed7cf8ee2f9d3996688a0cd63643ae8161e750bd6dda9d25093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>non-Gaussian states</topic><topic>non-Gaussianity measure</topic><topic>phase-space distribution function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiang, Shaohua</creatorcontrib><creatorcontrib>Li, Shanshan</creatorcontrib><creatorcontrib>Mi, Xianwu</creatorcontrib><collection>CrossRef</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Chinese physics B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiang, Shaohua</au><au>Li, Shanshan</au><au>Mi, Xianwu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert–Schmidt distance</atitle><jtitle>Chinese physics B</jtitle><addtitle>Chin. Phys. B</addtitle><date>2023-05-01</date><risdate>2023</risdate><volume>32</volume><issue>5</issue><spage>50309</spage><epage>343</epage><pages>50309-343</pages><issn>1674-1056</issn><abstract>Non-Gaussianity of quantum states is a very important source for quantum information technology and can be quantified by using the known squared Hilbert–Schmidt distance recently introduced by Genoni et al. ( Phys. Rev. A 78 042327 (2007)). It is, however, shown that such a measure has many imperfects such as the lack of the swapping symmetry and the ineffectiveness evaluation of even Schrödinger-cat-like states with small amplitudes. To deal with these difficulties, we propose an improved measure of non-Gaussianity for quantum states and discuss its properties in detail. We then exploit this improved measure to evaluate the non-Gaussianities of some relevant single-mode non-Gaussian states and multi-mode non-Gaussian entangled states. These results show that our measure is reliable. We also introduce a modified measure for Gaussianity following Mandilara and Cerf ( Phys. Rev. A 86 030102(R) (2012)) and establish a conservation relation of non-Gaussianity and Gaussianity of a quantum state.</abstract><pub>Chinese Physical Society and IOP Publishing Ltd</pub><doi>10.1088/1674-1056/acb0bd</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-1056
ispartof Chinese physics B, 2023-05, Vol.32 (5), p.50309-343
issn 1674-1056
language eng
recordid cdi_wanfang_journals_zgwl_e202305037
source Institute of Physics
subjects non-Gaussian states
non-Gaussianity measure
phase-space distribution function
title Developing improved measures of non-Gaussianity and Gaussianity for quantum states based on normalized Hilbert–Schmidt distance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T23%3A55%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Developing%20improved%20measures%20of%20non-Gaussianity%20and%20Gaussianity%20for%20quantum%20states%20based%20on%20normalized%20Hilbert%E2%80%93Schmidt%20distance&rft.jtitle=Chinese%20physics%20B&rft.au=Xiang,%20Shaohua&rft.date=2023-05-01&rft.volume=32&rft.issue=5&rft.spage=50309&rft.epage=343&rft.pages=50309-343&rft.issn=1674-1056&rft_id=info:doi/10.1088/1674-1056/acb0bd&rft_dat=%3Cwanfang_jour_cross%3Ezgwl_e202305037%3C/wanfang_jour_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-6d6be6343f7bfeed7cf8ee2f9d3996688a0cd63643ae8161e750bd6dda9d25093%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_wanfj_id=zgwl_e202305037&rfr_iscdi=true