Loading…

Constructing Low-Dimensional Quantum Devices Based on the Surface State of Topological Insulators

We propose a new method to construct low-dimensional quantum devices consisting of the magnetic topological insulators. Unlike previous systems based on locally depleting two-dimensional electron gas in semiconductor heterojunctions, magnetization provides a simpler and rewriteable fabrication way....

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics letters 2021-07, Vol.38 (7), p.77303-164
Main Authors: Zhang, Tian-Yi, Yan, Qing, Sun, Qing-Feng
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a new method to construct low-dimensional quantum devices consisting of the magnetic topological insulators. Unlike previous systems based on locally depleting two-dimensional electron gas in semiconductor heterojunctions, magnetization provides a simpler and rewriteable fabrication way. The motion of electrons can be manipulated through the domain wall formed by the boundary between different magnetic domains. Here, three devices designed by local magnetization are presented. For the quantum point contact, conductance exhibits quantized plateaus with the increasing silt width between two magnetic domains. For the quantum dot, conductance shows pronounced peaks as the change of gate voltage. Finally, for the Aharonov–Bohm ring, conductance oscillates periodically with the external magnetic field. Numerical results show that the transport of these local magnetization systems is identical to that of the previous systems based on depleting two-dimensional electron gas, and the only difference is the approach of construction. These findings may pave the way for realization of low-power-consumption devices based on magnetic domain walls.
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/38/7/077303