Loading…

Phase selection in highly undercooled Fe-B eutectic alloy melts

The high undercooling technique by molten glass slag purification and cyclical superheating in Ar atmosphere was applied to bulk Fe-B alloy melts. A hypercooling was achieved which suppressed the formation of stable phase and consequently promoted the nucleation of metastable phase. Fe-17%B and Fe-2...

Full description

Saved in:
Bibliographic Details
Published in:Transactions of Nonferrous Metals Society of China 2006-02, Vol.16 (1), p.39-43
Main Author: 杨长林 饧根仓 卢一平 陈豫增 周尧和
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The high undercooling technique by molten glass slag purification and cyclical superheating in Ar atmosphere was applied to bulk Fe-B alloy melts. A hypercooling was achieved which suppressed the formation of stable phase and consequently promoted the nucleation of metastable phase. Fe-17%B and Fe-20%B alloys were investigated, respectively. TEM and X-ray powder diffraction analyses verify the formation of metastable phase in the highly tmdercooled Fe-B alloy melts. Besides, the critical nucleation work of Fe2B and Fe3B phases was calculated to predict phase selection in the undercooled melts. The results show that the metastable phase formation is a function of the undercooling achieved prior to nucleation. And the amount of undercooling is an important factor in determining microstructural development by controlling phase selection in the undercooled melts.
ISSN:1003-6326
DOI:10.1016/S1003-6326(06)60007-1