Loading…
Fabrication, lattice strain, corrosion resistance and mechanical strength of nanocrystalline nickel films
Nanocrystalline nickel films of 17-40 nm grain sizes were prepared using pulsejet electrodeposition. Structure, corrosion and lattice strain were analysed by transmission electron microscope, electrochemical workstation and X-ray diffraction, revealing that with decreasing of grain size, the lattice...
Saved in:
Published in: | Transactions of Nonferrous Metals Society of China 2007-12, Vol.17 (6), p.1225-1229 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Nanocrystalline nickel films of 17-40 nm grain sizes were prepared using pulsejet electrodeposition. Structure, corrosion and lattice strain were analysed by transmission electron microscope, electrochemical workstation and X-ray diffraction, revealing that with decreasing of grain size, the lattice strain, corrosion rate of the films are enhanced. The observations can be consistently understood in terms of the bond-order-length-strength correlation mechanism indicating that the shortened and strengthened bonds between the under-coordinated atoms modify the eriergy density and the atomic cohesive energy in the surface skins of the grains. The surface energy density gain is responsible for the residual atomic cohesive energy for the activation energy of corrosion. Additionally, a novel algorithm was proposed to extract the elastic-plastic properties of nickel films and results that the nickel film has much higher yield strength than bulk nickel. |
---|---|
ISSN: | 1003-6326 |
DOI: | 10.1016/S1003-6326(07)60253-2 |