Loading…
Numerical modeling and experimental study of microstamping process for fabricating microchannels using thin sheets of titanium
Ultra-thin sheets of titanium for fabricating microchannels have been used in fuel cells due to their good corrosion resistance and high strength-weight ratio. This paper presents a constitutive model for studying the anisotropy effects of pure titanium (CP-Ti) sheet on the springback behavior and f...
Saved in:
Published in: | Journal of Zhejiang University. A. Science 2023-12, Vol.24 (12), p.1079-1095 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Ultra-thin sheets of titanium for fabricating microchannels have been used in fuel cells due to their good corrosion resistance and high strength-weight ratio. This paper presents a constitutive model for studying the anisotropy effects of pure titanium (CP-Ti) sheet on the springback behavior and forming properties during the microstamping process. Thin sheets of CP-Ti specimens with different orientations were examined using uniaxial tensile tests to assess the effects of anisotropy on their mechanical properties. Then an anisotropic constitutive model considering the off-axis elastic modulus was developed based on orthotropic elasticity and Hill’s yield criterion. Numerical modeling and simulation of the microstamping process for fabricating multi-channel structures were performed. The effects of anisotropy on the springback of multi-channels were investigated and compared with experimental results; the effects of tool dimension parameters on the formability of microchannel structures were also analyzed. The results showed that the anisotropy of thin titanium sheets causes various degrees of forming loads and springback in the microstamping of microchannels at different orientations. This study accurately predicts the springback of thin titanium sheet used to fabricate microchannel structures and is a good guide to the formation of such structures. |
---|---|
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.A2300083 |