Loading…
Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification
Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops...
Saved in:
Published in: | Frontiers of information technology & electronic engineering 2023, Vol.24 (1), p.59-72 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983 |
---|---|
cites | cdi_FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983 |
container_end_page | 72 |
container_issue | 1 |
container_start_page | 59 |
container_title | Frontiers of information technology & electronic engineering |
container_volume | 24 |
creator | Sun, Jie |
description | Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is valuable in refining the neural network prediction and thus improves accuracy. |
doi_str_mv | 10.1631/FITEE.2100519 |
format | article |
fullrecord | <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zjdxxbc_e202301004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zjdxxbc_e202301004</wanfj_id><sourcerecordid>zjdxxbc_e202301004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983</originalsourceid><addsrcrecordid>eNptkMFLwzAUh4MoOOaO3gvehM4kbdP2KHPTwcDLxGPIkpeus01m0rHNv97MKrt4eg_e937v8SF0S_CYsIQ8zObL6XRMCcYZKS_QgOIyi0ua4Mu_nhTpNRp5v8EYE0bKvCwG6P3JtqI20Yex-wZUBRGYtTASVKQAtlEDwpnaVJG2LoIGZOesFE7VtnKijYRz62O3bmsRyUZ4X-taiq625gZdadF4GP3WIXqbTZeTl3jx-jyfPC5iSVnZxVlWlFIxQURKQGRas5VKIEtUyhjLVVnQROcFVYSGb0nCaCJJAYHXaXoaJ0N03-fuhdHCVHxjd86Ei_xrow6HleRAcbAQvKQBvuvhrbOfO_DdmaZBT07DTRqouKeks9470Hzr6la4IyeYn1zzH9f813Xgxz3vA2cqcOfU_xe-AaAhf_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918726672</pqid></control><display><type>article</type><title>Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification</title><source>Springer Nature</source><creator>Sun, Jie</creator><creatorcontrib>Sun, Jie</creatorcontrib><description>Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is valuable in refining the neural network prediction and thus improves accuracy.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.2100519</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Artificial neural networks ; Cardiac arrhythmia ; Classification ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Decision making ; Deep learning ; Electrical Engineering ; Electrocardiography ; Electronics and Microelectronics ; Instrumentation ; Knowledge ; Logic ; Machine learning ; Networks ; Neural networks</subject><ispartof>Frontiers of information technology & electronic engineering, 2023, Vol.24 (1), p.59-72</ispartof><rights>Zhejiang University Press 2023</rights><rights>Zhejiang University Press 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983</citedby><cites>FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983</cites><orcidid>0000-0003-2996-7613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zjdxxbc-e/zjdxxbc-e.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jie</creatorcontrib><title>Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification</title><title>Frontiers of information technology & electronic engineering</title><addtitle>Front Inform Technol Electron Eng</addtitle><description>Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is valuable in refining the neural network prediction and thus improves accuracy.</description><subject>Artificial neural networks</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Electrical Engineering</subject><subject>Electrocardiography</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Knowledge</subject><subject>Logic</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Neural networks</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAUh4MoOOaO3gvehM4kbdP2KHPTwcDLxGPIkpeus01m0rHNv97MKrt4eg_e937v8SF0S_CYsIQ8zObL6XRMCcYZKS_QgOIyi0ua4Mu_nhTpNRp5v8EYE0bKvCwG6P3JtqI20Yex-wZUBRGYtTASVKQAtlEDwpnaVJG2LoIGZOesFE7VtnKijYRz62O3bmsRyUZ4X-taiq625gZdadF4GP3WIXqbTZeTl3jx-jyfPC5iSVnZxVlWlFIxQURKQGRas5VKIEtUyhjLVVnQROcFVYSGb0nCaCJJAYHXaXoaJ0N03-fuhdHCVHxjd86Ei_xrow6HleRAcbAQvKQBvuvhrbOfO_DdmaZBT07DTRqouKeks9470Hzr6la4IyeYn1zzH9f813Xgxz3vA2cqcOfU_xe-AaAhf_w</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Sun, Jie</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><general>School of Cyber Science and Engineering,Ningbo University of Technology,Ningbo 315211,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0003-2996-7613</orcidid></search><sort><creationdate>2023</creationdate><title>Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification</title><author>Sun, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Electrical Engineering</topic><topic>Electrocardiography</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Knowledge</topic><topic>Logic</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Frontiers of information technology & electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification</atitle><jtitle>Frontiers of information technology & electronic engineering</jtitle><stitle>Front Inform Technol Electron Eng</stitle><date>2023</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is valuable in refining the neural network prediction and thus improves accuracy.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.2100519</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2996-7613</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2095-9184 |
ispartof | Frontiers of information technology & electronic engineering, 2023, Vol.24 (1), p.59-72 |
issn | 2095-9184 2095-9230 |
language | eng |
recordid | cdi_wanfang_journals_zjdxxbc_e202301004 |
source | Springer Nature |
subjects | Artificial neural networks Cardiac arrhythmia Classification Communications Engineering Computer Hardware Computer Science Computer Systems Organization and Communication Networks Decision making Deep learning Electrical Engineering Electrocardiography Electronics and Microelectronics Instrumentation Knowledge Logic Machine learning Networks Neural networks |
title | Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20knowledge%20enhanced%20deep%20learning%20for%20electrocardiogram%20arrhythmia%20classification&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Sun,%20Jie&rft.date=2023&rft.volume=24&rft.issue=1&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.2100519&rft_dat=%3Cwanfang_jour_proqu%3Ezjdxxbc_e202301004%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918726672&rft_id=info:pmid/&rft_wanfj_id=zjdxxbc_e202301004&rfr_iscdi=true |