Loading…

Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification

Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of information technology & electronic engineering 2023, Vol.24 (1), p.59-72
Main Author: Sun, Jie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983
cites cdi_FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983
container_end_page 72
container_issue 1
container_start_page 59
container_title Frontiers of information technology & electronic engineering
container_volume 24
creator Sun, Jie
description Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is valuable in refining the neural network prediction and thus improves accuracy.
doi_str_mv 10.1631/FITEE.2100519
format article
fullrecord <record><control><sourceid>wanfang_jour_proqu</sourceid><recordid>TN_cdi_wanfang_journals_zjdxxbc_e202301004</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><wanfj_id>zjdxxbc_e202301004</wanfj_id><sourcerecordid>zjdxxbc_e202301004</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983</originalsourceid><addsrcrecordid>eNptkMFLwzAUh4MoOOaO3gvehM4kbdP2KHPTwcDLxGPIkpeus01m0rHNv97MKrt4eg_e937v8SF0S_CYsIQ8zObL6XRMCcYZKS_QgOIyi0ua4Mu_nhTpNRp5v8EYE0bKvCwG6P3JtqI20Yex-wZUBRGYtTASVKQAtlEDwpnaVJG2LoIGZOesFE7VtnKijYRz62O3bmsRyUZ4X-taiq625gZdadF4GP3WIXqbTZeTl3jx-jyfPC5iSVnZxVlWlFIxQURKQGRas5VKIEtUyhjLVVnQROcFVYSGb0nCaCJJAYHXaXoaJ0N03-fuhdHCVHxjd86Ei_xrow6HleRAcbAQvKQBvuvhrbOfO_DdmaZBT07DTRqouKeks9470Hzr6la4IyeYn1zzH9f813Xgxz3vA2cqcOfU_xe-AaAhf_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918726672</pqid></control><display><type>article</type><title>Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification</title><source>Springer Nature</source><creator>Sun, Jie</creator><creatorcontrib>Sun, Jie</creatorcontrib><description>Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is valuable in refining the neural network prediction and thus improves accuracy.</description><identifier>ISSN: 2095-9184</identifier><identifier>EISSN: 2095-9230</identifier><identifier>DOI: 10.1631/FITEE.2100519</identifier><language>eng</language><publisher>Hangzhou: Zhejiang University Press</publisher><subject>Artificial neural networks ; Cardiac arrhythmia ; Classification ; Communications Engineering ; Computer Hardware ; Computer Science ; Computer Systems Organization and Communication Networks ; Decision making ; Deep learning ; Electrical Engineering ; Electrocardiography ; Electronics and Microelectronics ; Instrumentation ; Knowledge ; Logic ; Machine learning ; Networks ; Neural networks</subject><ispartof>Frontiers of information technology &amp; electronic engineering, 2023, Vol.24 (1), p.59-72</ispartof><rights>Zhejiang University Press 2023</rights><rights>Zhejiang University Press 2023.</rights><rights>Copyright © Wanfang Data Co. Ltd. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983</citedby><cites>FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983</cites><orcidid>0000-0003-2996-7613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.wanfangdata.com.cn/images/PeriodicalImages/zjdxxbc-e/zjdxxbc-e.jpg</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Jie</creatorcontrib><title>Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification</title><title>Frontiers of information technology &amp; electronic engineering</title><addtitle>Front Inform Technol Electron Eng</addtitle><description>Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is valuable in refining the neural network prediction and thus improves accuracy.</description><subject>Artificial neural networks</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Communications Engineering</subject><subject>Computer Hardware</subject><subject>Computer Science</subject><subject>Computer Systems Organization and Communication Networks</subject><subject>Decision making</subject><subject>Deep learning</subject><subject>Electrical Engineering</subject><subject>Electrocardiography</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Knowledge</subject><subject>Logic</subject><subject>Machine learning</subject><subject>Networks</subject><subject>Neural networks</subject><issn>2095-9184</issn><issn>2095-9230</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNptkMFLwzAUh4MoOOaO3gvehM4kbdP2KHPTwcDLxGPIkpeus01m0rHNv97MKrt4eg_e937v8SF0S_CYsIQ8zObL6XRMCcYZKS_QgOIyi0ua4Mu_nhTpNRp5v8EYE0bKvCwG6P3JtqI20Yex-wZUBRGYtTASVKQAtlEDwpnaVJG2LoIGZOesFE7VtnKijYRz62O3bmsRyUZ4X-taiq625gZdadF4GP3WIXqbTZeTl3jx-jyfPC5iSVnZxVlWlFIxQURKQGRas5VKIEtUyhjLVVnQROcFVYSGb0nCaCJJAYHXaXoaJ0N03-fuhdHCVHxjd86Ei_xrow6HleRAcbAQvKQBvuvhrbOfO_DdmaZBT07DTRqouKeks9470Hzr6la4IyeYn1zzH9f813Xgxz3vA2cqcOfU_xe-AaAhf_w</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Sun, Jie</creator><general>Zhejiang University Press</general><general>Springer Nature B.V</general><general>School of Cyber Science and Engineering,Ningbo University of Technology,Ningbo 315211,China</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>2B.</scope><scope>4A8</scope><scope>92I</scope><scope>93N</scope><scope>PSX</scope><scope>TCJ</scope><orcidid>https://orcid.org/0000-0003-2996-7613</orcidid></search><sort><creationdate>2023</creationdate><title>Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification</title><author>Sun, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial neural networks</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Communications Engineering</topic><topic>Computer Hardware</topic><topic>Computer Science</topic><topic>Computer Systems Organization and Communication Networks</topic><topic>Decision making</topic><topic>Deep learning</topic><topic>Electrical Engineering</topic><topic>Electrocardiography</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Knowledge</topic><topic>Logic</topic><topic>Machine learning</topic><topic>Networks</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Jie</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Wanfang Data Journals - Hong Kong</collection><collection>WANFANG Data Centre</collection><collection>Wanfang Data Journals</collection><collection>万方数据期刊 - 香港版</collection><collection>China Online Journals (COJ)</collection><collection>China Online Journals (COJ)</collection><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification</atitle><jtitle>Frontiers of information technology &amp; electronic engineering</jtitle><stitle>Front Inform Technol Electron Eng</stitle><date>2023</date><risdate>2023</risdate><volume>24</volume><issue>1</issue><spage>59</spage><epage>72</epage><pages>59-72</pages><issn>2095-9184</issn><eissn>2095-9230</eissn><abstract>Deep learning provides an effective way for automatic classification of cardiac arrhythmias, but in clinical decision-making, pure data-driven methods working as black-boxes may lead to unsatisfactory results. A promising solution is combining domain knowledge with deep learning. This paper develops a flexible and extensible framework for integrating domain knowledge with a deep neural network. The model consists of a deep neural network to capture the statistical pattern between input data and the ground-truth label, and a knowledge module to guarantee consistency with the domain knowledge. These two components are trained interactively to bring the best of both worlds. The experiments show that the domain knowledge is valuable in refining the neural network prediction and thus improves accuracy.</abstract><cop>Hangzhou</cop><pub>Zhejiang University Press</pub><doi>10.1631/FITEE.2100519</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2996-7613</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2095-9184
ispartof Frontiers of information technology & electronic engineering, 2023, Vol.24 (1), p.59-72
issn 2095-9184
2095-9230
language eng
recordid cdi_wanfang_journals_zjdxxbc_e202301004
source Springer Nature
subjects Artificial neural networks
Cardiac arrhythmia
Classification
Communications Engineering
Computer Hardware
Computer Science
Computer Systems Organization and Communication Networks
Decision making
Deep learning
Electrical Engineering
Electrocardiography
Electronics and Microelectronics
Instrumentation
Knowledge
Logic
Machine learning
Networks
Neural networks
title Domain knowledge enhanced deep learning for electrocardiogram arrhythmia classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A49%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wanfang_jour_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Domain%20knowledge%20enhanced%20deep%20learning%20for%20electrocardiogram%20arrhythmia%20classification&rft.jtitle=Frontiers%20of%20information%20technology%20&%20electronic%20engineering&rft.au=Sun,%20Jie&rft.date=2023&rft.volume=24&rft.issue=1&rft.spage=59&rft.epage=72&rft.pages=59-72&rft.issn=2095-9184&rft.eissn=2095-9230&rft_id=info:doi/10.1631/FITEE.2100519&rft_dat=%3Cwanfang_jour_proqu%3Ezjdxxbc_e202301004%3C/wanfang_jour_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c269t-5589cd6a1a41ea5ff6bd3e53d46667d9823f782d1279813623c18e6a1f447d983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918726672&rft_id=info:pmid/&rft_wanfj_id=zjdxxbc_e202301004&rfr_iscdi=true