Loading…
A Single Amino-Acid Substitution at Lysine 40 of an Arabidopsis thaliana α-tubulin Causes Extensive Cell Proliferation and Expansion Defects
Microtubules are highly dynamic cytoskeletal polymers of α/β-tubulin heterodimers that undergo multiple post-translational modifications essential for various cellular functions in eukaryotes. The lysine 40 (K40) is largely conserved in α-tubulins in many eukaryote species, and the post-translationa...
Saved in:
Published in: | Journal of integrative plant biology 2013-03, Vol.55 (3), p.209-220 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Microtubules are highly dynamic cytoskeletal polymers of α/β-tubulin heterodimers that undergo multiple post-translational modifications essential for various cellular functions in eukaryotes. The lysine 40 (K40) is largely conserved in α-tubulins in many eukaryote species, and the post-translational modification by acetylation at K40 is critical for neuronal development in vertebrates. However, the biological function of K40 of α-tubulins in plants remains unexplored. In this study, we show in Arabidopsis thaliana that constitutive expression of mutated forms of α-tubulin6 (TUA6) at K40 (TUA6K40A or TUA6K40Q ), in which K40 is replaced by alanine or glutamine, result in severely reduced plant size. Phenotypic characterization of the 35S:TUA6K40A transgenic plants revealed that both cell proliferation and cell expansion were affected. Cytological and biochemical analyses showed that the accumulation of α- and β-tubulin proteins was significantly reduced in the transgenic plants, and the cortical microtubule arrays were severely disrupted, indicating that K40 of the plant α-tubulin is critical in maintaining microtubule stability. We also constructed 35S:TUA6K40R transgenic plants in which K40 of the engineered TUA6 protein is replaced by an arginine, and found that the 35S:TUA6K40R plants were phenotypically indistinguishable from the wild-type. Since lysine and arginine are similar in biochemical nature but arginine cannot be acetylated, these results suggest a structural importance for K40 of α-tubulins in cell division and expansion. |
---|---|
ISSN: | 1672-9072 1744-7909 |
DOI: | 10.1111/jipb.12003 |